Pig和Hive有什么不同?

Pig和Hive有什么不同?,第1张

Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的 *** 作使得半结构化数据变得有意义。

Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS,并允许使用类似于SQL语法进行数据查询。

Pig是一种数据流语言和运行环境,用于检索非常大的数据集。为大型数据集的处理提供了一个更高层次的抽象。Pig包括两部分:一是用于描述数据流的语言,称为Pig Latin;二是用于运行Pig Latin程序的执行环境。

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Hive是基于Hadoop平台的数仓工具,具有海量数据存储、水平可扩展、离线批量处理的优点,解决了传统关系型数仓不能支持海量数据存储、水平可扩展性差等问题,但是由于Hive数据存储和数据处理是依赖于HDFS和MapReduce,因此在Hive进行数据离线批量处理时,需将查询语言先转换成MR任务,由MR批量处理返回结果,所以Hive没法满足数据实时查询分析的需求。

Hive是由FaceBook研发并开源,当时FaceBook使用Oracle作为数仓,由于数据量越来越大,Oracle数仓性能越来越差,没法实现海量数据的离线批量分析,因此基于Hadoop研发Hive,并开源给Apacha。

由于Hive不能实现数据实时查询交互,Hbase可提供实时在线查询能力,因此Hive和Hbase形成了良性互补。Hbase因为其海量数据存储、水平扩展、批量数据处理等优点,也得到了广泛应用。

Pig与HIVE工具类似,都可以用类sql语言对数据进行处理。但是他们应用场景有区别,Pig用于数据仓库数据的ETL,HIVE用于数仓数据分析。

从架构图当中,可看出Hive并没有完成数据的存储和处理,它是由HDFS完成数据存储,MR完成数据处理,其只是提供了用户查询语言的能力。Hive支持类sql语言,这种SQL称为Hivesql。用户可用Hivesql语言查询,其驱动可将Hivesql语言转换成MR任务,完成数据处理。

【Hive的访问接口】

CLI:是hive提供的命令行工具

HWI:是Hive的web访问接口

JDBC/ODBC:是两种的标准的应用程序编程访问接口

Thrift Server:提供异构语言,进行远程RPC调用Hive的能力。

因此Hiv具备丰富的访问接口能力,几乎能满足各种开发应用场景需求。

【Driver】

是HIVE比较核心的驱动模块,包含编译器、优化器、执行器,职责为把用户输入的Hivesql转换成MR数据处理任务

【Metastore】

是HIVE的元数据存储模块,数据的访问和查找,必须要先访问元数据。Hive中的元数据一般使用单独的关系型数据库存储,常用的是Mysql,为了确保高可用,Mysql元数据库还需主备部署。

架构图上面Karmasphere、Hue、Qubole也是访问HIVE的工具,其中Qubole可远程访问HIVE,相当于HIVE作为一种公有云服务,用户可通过互联网访问Hive服务。

Hive在使用过程中出现了一些不稳定问题,由此发展出了Hive HA机制,

hive os不能查看延迟

Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10863199.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存