Error[8]: Undefined offset: 224, File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 121
File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 473, decode(

概述董淳光SQLITE3使用总结(1) 2008年08月07日 星期四 9:32 sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你 *** 作数据库。 sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、 董淳光sqlite3使用总结(1) 2008年08月07日 星期四 9:32

sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准SQL语句(以char *类型)给sqlite函数,sqlite就会为你 *** 作数据库。

sqlite跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。

sqlite不需要任何数据库引擎,这意味着如果你需要sqlite来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。

下面开始介绍数据库基本 *** 作。

(1)基本流程

i.1关键数据结构

sqlite里最常用到的是sqlite3 *类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要 *** 作的数据库。下面再详细介绍。

i.2打开数据库

int sqlite3_open(文件名,sqlite3 ** );

用这个函数开始数据库 *** 作。

需要传入两个参数,一是数据库文件名,比如:c:\DongChunGuang_Database.db。

文件名不需要一定存在,如果此文件不存在,sqlite会自动建立它。如果它存在,就尝试把它当数据库文件来打开。

sqlite3 **参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示 *** 作是否正确,如果是sqlITE_OK则表示 *** 作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考sqlite3.h文件。里面有详细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

下面给段简单的代码:

extern"C"

{

#include"./sqlite3.h"

};

int main( int,char** )

{

sqlite3 * db = NulL;//声明sqlite关键结构指针

int result;

//打开数据库

//需要传入db这个指针的指针,因为sqlite3_open函数要为这个指针分配内存,还要让db指针指向这个内存区

result = sqlite3_open(“c:\Dcg_database.db”,&db );

if( result !=sqlITE_OK)

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return0;

}

这就是一次数据库 *** 作过程。



董淳光之sqlite3 使用总结(2) 2008年08月07日 星期四 9:35

(2) SQL语句 *** 作
本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行SQL语句

int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,voID *,char **errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)结尾。

第4个参数voID * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NulL。等下我们再看回调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 voID * 这两个位置都可以填 NulL。填NulL表示你不需要回调。比如你做 insert *** 作,做 delete *** 作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(voID*,int,char**,char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( voID * para,int n_column,char ** column_value,char ** column_name )

{

//para是你在 sqlite3_exec 里传入的 voID * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是voID*类型,必须强制转换成你的类型才可用)。然后 *** 作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以 //char ** column_name 跟 column_value是对应的,表示这个字段的字段名称结尾)

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段\n”,n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,column_name[i],column_value[i] );

}

printf( “------------------\n“ );

return 0;

}

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//创建一个测试表,表名叫 Mytable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db,“create table Mytable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NulL,errmsg );

if(result != sqlITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );

}

//插入一些记录

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘走路’ )”,errmsg );

if(result != sqlITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );

}

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘骑单车’ )”,“insert into Mytable_1( name ) values ( ‘坐汽车’ )”,errmsg );

}

//开始查询数据库

result = sqlite3_exec( db,“select * from Mytable_1”,LoadMyInfo,errmsg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本 *** 作。

有这些知识,基本上可以应付很多数据库 *** 作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select *** 作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。

int sqlite3_get_table(sqlite3*,char ***resultp,int *nrow,int *ncolumn,char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。结尾的char *字符串。

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

char **dbResult; //是 char ** 类型,两个*号

int nRow,nColumn;

int i,j;

int index;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//假设前面已经创建了 Mytable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***

result = sqlite3_get_table( db,&dbResult,&nRow,&nColumn,&errmsg );

if( sqlITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据

printf( “查到%d条记录\n”,nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录\n”,i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,dbResult[j],dbResult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示

}

printf( “-------\n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

(2)

sqlite *** 作二进制数据需要用一个辅助的数据类型:

写入二进制

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

然后,把一个SQL语句解析到stat结构里去: *** 作二进制

sqlite3_stmt *。

这个数据类型记录了一个“SQL语句”。为什么我把 “SQL语句” 用双引号引起来?因为你可以把sqlite3_stmt *所表示的内容看成是SQL语句,但是实际上它不是我们所熟知的SQL语句。它是一个已经把SQL语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到sqlite3_stmt结构里可不能直接memcpy,也不能像std::string那样用+号。必须用sqlite提供的函数来插入。

i.1

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是blob类型。我假设有这么一张表:

create table Tbl_2( ID integer,file_contentblob )

首先声明

sqlite3_stmt * stat;

上面的函数完成SQL语句的解析。第一个参数跟前面一样,是个sqlite3 *类型变量,第二个参数是一个SQL语句。

sqlite3_prepare( db,这个SQL语句特别之处在于values里面有个?号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。insert into Tbl_2( ID,file_content) values( 10,? )第三个参数我写的是-1,这个参数含义是前面SQL语句的长度。如果小于0,sqlite会自动计算它的长度(把SQL语句当成以第四个参数是sqlite3_stmt的指针的指针。解析以后的SQL语句就放在这个结构里。结尾的字符串)。,-1,&stat,0 );

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是

sqlITE_OK

且stat不为NulL),那么下面就可以开始插入二进制数据。

int

//pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

sqlite3_bind_blob( stat,1,pdata,(这个函数一共有5个参数。)(length_of_data_in_bytes),NulL );第1个参数:是前面prepare得到的sqlite3_stmt *类型变量。第2个参数:?号的索引。前面prepare的SQL语句里有一个?号,假如有多个?号怎么插入?方法就是改变bind_blob函数第2个参数。这个参数我写1,表示这里插入的值要替换stat的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个bind_blob语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NulL,需要释放的内存自己用代码来释放。

bind完了之后,二进制数据就进入了你的“SQL语句”里了。你现在可以把它保存到数据库里:

通过这个语句,stat表示的SQL语句就被写到了数据库里。

最后,要把sqlite3_stmt结构给释放:

//

把刚才分配的内容析构掉

int result = sqlite3_step( stat );

读出二进制

然后,把一个SQL语句解析到stat结构里去:

sqlite3_finalize( stat );当prepare成功之后(返回值是

i.2sqlITE_OK

下面说读二进制的步骤。

跟前面一样,先声明sqlite3_stmt *类型变量:

sqlite3_stmt * stat;

),开始查询数据。

sqlite3_prepare( db,这一句的返回值是select * from Tbl_2”,0 );

sqlITE_ROW时表示成功(不是sqlITE_OK

int result = sqlite3_step( stat );

)。你可以循环执行sqlite3_step函数,一次step查询出一条记录。直到返回值不为sqlITE_ROW时表示查询结束。然后开始获取第一个字段:ID的值。ID是个整数,用下面这个语句获取它的值:

//第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0下面开始获取

这样就得到了二进制的值。

int ID = sqlite3_column_int( stat,0 );把pfileContent的内容保存出来之后,不要忘了释放sqlite3_stmt结构://

把刚才分配的内容析构掉file_content的值,因为file_content是二进制,因此我需要得到它的指针,还有它的长度:

const voID * pfileContent = sqlite3_column_blob( stat,1 );

int len = sqlite3_column_bytes( stat,1 );

sqlite3_stmt

这样,stat结构又成为sqlite3_prepare完成时的状态,你可以重新为它bind内容。

sqlite3_finalize( stat );[+++][+++]

i.3重复使用[+++]结构

如果你需要重复使用sqlite3_prepare解析好的sqlite3_stmt结构,需要用函数:sqlite3_reset。

result = sqlite3_reset(stat);

[+++]


董淳光之sqlite3 使用总结(3) 2008年08月07日 星期四 9:39

(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。

通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个 *** 作是很慢的。因为时间都花在了开始事务、提交事务上。

你可以把这些同类 *** 作做成一个事务,这样如果 *** 作错误,还能够回滚事务。

事务的 *** 作没有特别的接口函数,它就是一个普通的 sql 语句而已:

分别如下:

int result;

result = sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务

result = sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务

result = sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务

一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我 *** 作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

i.1 必要的宏

通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 sqlITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef sqlITE_HAS_CODEC

#define sqlITE_HAS_CODEC

#endif

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是 *** 作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。

定义了这个宏,一些被 sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用

Fatal error LNK1120: 4 个无法解析的外部命令

这是正常的,因为sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

i.2 自己实现加解密接口函数

如果真要我从一份www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_sqlITE_CRYPT_FUNC_

#define DCG_sqlITE_CRYPT_FUNC_

/***********

董淳光写的 sqlITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define sqlITE_DEFAulT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef sqlITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

voID sqlite3pager_free_codecarg(voID *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that ThreadData.nAlloc can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef sqlITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。


i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库 *** 作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面 *** 作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db,"dcg",3 );

//修改密码

i = sqlite3_rekey( db,0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何 *** 作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 sqlITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db,0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef sqlITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock,*LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_padding /*密钥位数不足时补充的字符*/

#define DB_KEY_padding 0x33 /*密钥位数不足时补充的字符*/

#endif


/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

voID sqlite3CodecGetKey(sqlite3* db,int nDB,voID** Key,int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,const voID *pKey,int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

voID sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db,int nKey);

int sqlite3_rekey(sqlite3 *db,int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);

//加密/解密函数,被pager调用

voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode);

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize);

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock);

static voID * sqlite3pager_get_codecarg(Pager *pPager);

voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int),voID *pCodecArg );

//加密/解密函数,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int DWPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageheader;

pageheader = DATA_TO_PGHDR(data);

if (pageheader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0,pageheader->pPager,pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

DWPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static voID * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NulL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)

{

unsigned char * hKey = NulL;

int j;

if( pKey == NulL || nKeyLen == 0 )

{

return NulL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NulL )

{

return NulL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen,DB_KEY_padding,j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey,DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock,sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

}

memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

voID sqlite3pager_set_codec(

Pager *pPager,

voID *(*xCodec)(voID*,

voID *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,int nKey)

{

return sqlite3_key_interop(db,nKey);

}

int sqlite3_rekey(sqlite3 *db,int nKey)

{

return sqlite3_rekey_interop(db,nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)

{

int rc = sqlITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

if (!pBlock) return sqlITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return sqlITE_OK; //没有加密

memcpy(pBlock->ReadKey,&hKey,16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey,nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NulL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);

rc = sqlITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey,nKeySize);

int rc = sqlITE_ERROR;

if (!pBlock && !hKey) return sqlITE_OK;

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey,p,NulL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt,1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

voID *pPage;

Pgno n;

for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p,n,&pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p,NulL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)

{

return sqlite3CodecAttach(db,nKeySize);

}

// 释放与一个页相关的加密块

voID sqlite3pager_free_codecarg(voID *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef sqlITE_HAS_CODEC


五、 后记
写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光。以示对我劳动的肯定。

总结

以上是内存溢出为你收集整理的董淳光SQLITE3使用总结全部内容,希望文章能够帮你解决董淳光SQLITE3使用总结所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

)
File: /www/wwwroot/outofmemory.cn/tmp/route_read.php, Line: 126, InsideLink()
File: /www/wwwroot/outofmemory.cn/tmp/index.inc.php, Line: 165, include(/www/wwwroot/outofmemory.cn/tmp/route_read.php)
File: /www/wwwroot/outofmemory.cn/index.php, Line: 30, include(/www/wwwroot/outofmemory.cn/tmp/index.inc.php)
Error[8]: Undefined offset: 225, File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 121
File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 473, decode(

概述董淳光SQLITE3使用总结(1) 2008年08月07日 星期四 9:32 sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你 *** 作数据库。 sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、 董淳光sqlite3使用总结(1) 2008年08月07日 星期四 9:32

sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准SQL语句(以char *类型)给sqlite函数,sqlite就会为你 *** 作数据库。

sqlite跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。

sqlite不需要任何数据库引擎,这意味着如果你需要sqlite来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。

下面开始介绍数据库基本 *** 作。

(1)基本流程

i.1关键数据结构

sqlite里最常用到的是sqlite3 *类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要 *** 作的数据库。下面再详细介绍。

i.2打开数据库

int sqlite3_open(文件名,sqlite3 ** );

用这个函数开始数据库 *** 作。

需要传入两个参数,一是数据库文件名,比如:c:\DongChunGuang_Database.db。

文件名不需要一定存在,如果此文件不存在,sqlite会自动建立它。如果它存在,就尝试把它当数据库文件来打开。

sqlite3 **参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示 *** 作是否正确,如果是sqlITE_OK则表示 *** 作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考sqlite3.h文件。里面有详细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

下面给段简单的代码:

extern"C"

{

#include"./sqlite3.h"

};

int main( int,char** )

{

sqlite3 * db = NulL;//声明sqlite关键结构指针

int result;

//打开数据库

//需要传入db这个指针的指针,因为sqlite3_open函数要为这个指针分配内存,还要让db指针指向这个内存区

result = sqlite3_open(“c:\Dcg_database.db”,&db );

if( result !=sqlITE_OK)

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return0;

}

这就是一次数据库 *** 作过程。



董淳光之sqlite3 使用总结(2) 2008年08月07日 星期四 9:35

(2) SQL语句 *** 作
本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行SQL语句

int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,voID *,char **errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)结尾。

第4个参数voID * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NulL。等下我们再看回调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 voID * 这两个位置都可以填 NulL。填NulL表示你不需要回调。比如你做 insert *** 作,做 delete *** 作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(voID*,int,char**,char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( voID * para,int n_column,char ** column_value,char ** column_name )

{

//para是你在 sqlite3_exec 里传入的 voID * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是voID*类型,必须强制转换成你的类型才可用)。然后 *** 作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以 //char ** column_name 跟 column_value是对应的,表示这个字段的字段名称结尾)

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段\n”,n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,column_name[i],column_value[i] );

}

printf( “------------------\n“ );

return 0;

}

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//创建一个测试表,表名叫 Mytable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db,“create table Mytable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NulL,errmsg );

if(result != sqlITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );

}

//插入一些记录

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘走路’ )”,errmsg );

if(result != sqlITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );

}

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘骑单车’ )”,“insert into Mytable_1( name ) values ( ‘坐汽车’ )”,errmsg );

}

//开始查询数据库

result = sqlite3_exec( db,“select * from Mytable_1”,LoadMyInfo,errmsg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本 *** 作。

有这些知识,基本上可以应付很多数据库 *** 作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select *** 作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。

int sqlite3_get_table(sqlite3*,char ***resultp,int *nrow,int *ncolumn,char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。结尾的char *字符串。

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

char **dbResult; //是 char ** 类型,两个*号

int nRow,nColumn;

int i,j;

int index;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//假设前面已经创建了 Mytable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***

result = sqlite3_get_table( db,&dbResult,&nRow,&nColumn,&errmsg );

if( sqlITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据

printf( “查到%d条记录\n”,nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录\n”,i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,dbResult[j],dbResult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示

}

printf( “-------\n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

(2)

sqlite *** 作二进制数据需要用一个辅助的数据类型:

写入二进制

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

然后,把一个SQL语句解析到stat结构里去: *** 作二进制

sqlite3_stmt *。

这个数据类型记录了一个“SQL语句”。为什么我把 “SQL语句” 用双引号引起来?因为你可以把sqlite3_stmt *所表示的内容看成是SQL语句,但是实际上它不是我们所熟知的SQL语句。它是一个已经把SQL语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到sqlite3_stmt结构里可不能直接memcpy,也不能像std::string那样用+号。必须用sqlite提供的函数来插入。

i.1

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是blob类型。我假设有这么一张表:

create table Tbl_2( ID integer,file_contentblob )

首先声明

sqlite3_stmt * stat;

上面的函数完成SQL语句的解析。第一个参数跟前面一样,是个sqlite3 *类型变量,第二个参数是一个SQL语句。

sqlite3_prepare( db,这个SQL语句特别之处在于values里面有个?号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。insert into Tbl_2( ID,file_content) values( 10,? )第三个参数我写的是-1,这个参数含义是前面SQL语句的长度。如果小于0,sqlite会自动计算它的长度(把SQL语句当成以第四个参数是sqlite3_stmt的指针的指针。解析以后的SQL语句就放在这个结构里。结尾的字符串)。,-1,&stat,0 );

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是

sqlITE_OK

且stat不为NulL),那么下面就可以开始插入二进制数据。

int

//pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

sqlite3_bind_blob( stat,1,pdata,(这个函数一共有5个参数。)(length_of_data_in_bytes),NulL );第1个参数:是前面prepare得到的sqlite3_stmt *类型变量。第2个参数:?号的索引。前面prepare的SQL语句里有一个?号,假如有多个?号怎么插入?方法就是改变bind_blob函数第2个参数。这个参数我写1,表示这里插入的值要替换stat的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个bind_blob语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NulL,需要释放的内存自己用代码来释放。

bind完了之后,二进制数据就进入了你的“SQL语句”里了。你现在可以把它保存到数据库里:

通过这个语句,stat表示的SQL语句就被写到了数据库里。

最后,要把sqlite3_stmt结构给释放:

//

把刚才分配的内容析构掉

int result = sqlite3_step( stat );

读出二进制

然后,把一个SQL语句解析到stat结构里去:

sqlite3_finalize( stat );当prepare成功之后(返回值是

i.2sqlITE_OK

下面说读二进制的步骤。

跟前面一样,先声明sqlite3_stmt *类型变量:

sqlite3_stmt * stat;

),开始查询数据。

sqlite3_prepare( db,这一句的返回值是select * from Tbl_2”,0 );

sqlITE_ROW时表示成功(不是sqlITE_OK

int result = sqlite3_step( stat );

)。你可以循环执行sqlite3_step函数,一次step查询出一条记录。直到返回值不为sqlITE_ROW时表示查询结束。然后开始获取第一个字段:ID的值。ID是个整数,用下面这个语句获取它的值:

//第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0下面开始获取

这样就得到了二进制的值。

int ID = sqlite3_column_int( stat,0 );把pfileContent的内容保存出来之后,不要忘了释放sqlite3_stmt结构://

把刚才分配的内容析构掉file_content的值,因为file_content是二进制,因此我需要得到它的指针,还有它的长度:

const voID * pfileContent = sqlite3_column_blob( stat,1 );

int len = sqlite3_column_bytes( stat,1 );

sqlite3_stmt

这样,stat结构又成为sqlite3_prepare完成时的状态,你可以重新为它bind内容。

sqlite3_finalize( stat );[+++]

i.3重复使用[+++]结构

如果你需要重复使用sqlite3_prepare解析好的sqlite3_stmt结构,需要用函数:sqlite3_reset。

result = sqlite3_reset(stat);

[+++]


董淳光之sqlite3 使用总结(3) 2008年08月07日 星期四 9:39

(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。

通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个 *** 作是很慢的。因为时间都花在了开始事务、提交事务上。

你可以把这些同类 *** 作做成一个事务,这样如果 *** 作错误,还能够回滚事务。

事务的 *** 作没有特别的接口函数,它就是一个普通的 sql 语句而已:

分别如下:

int result;

result = sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务

result = sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务

result = sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务

一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我 *** 作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

i.1 必要的宏

通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 sqlITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef sqlITE_HAS_CODEC

#define sqlITE_HAS_CODEC

#endif

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是 *** 作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。

定义了这个宏,一些被 sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用

Fatal error LNK1120: 4 个无法解析的外部命令

这是正常的,因为sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

i.2 自己实现加解密接口函数

如果真要我从一份www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_sqlITE_CRYPT_FUNC_

#define DCG_sqlITE_CRYPT_FUNC_

/***********

董淳光写的 sqlITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define sqlITE_DEFAulT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef sqlITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

voID sqlite3pager_free_codecarg(voID *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that ThreadData.nAlloc can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef sqlITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。


i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库 *** 作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面 *** 作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db,"dcg",3 );

//修改密码

i = sqlite3_rekey( db,0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何 *** 作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 sqlITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db,0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef sqlITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock,*LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_padding /*密钥位数不足时补充的字符*/

#define DB_KEY_padding 0x33 /*密钥位数不足时补充的字符*/

#endif


/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

voID sqlite3CodecGetKey(sqlite3* db,int nDB,voID** Key,int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,const voID *pKey,int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

voID sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db,int nKey);

int sqlite3_rekey(sqlite3 *db,int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);

//加密/解密函数,被pager调用

voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode);

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize);

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock);

static voID * sqlite3pager_get_codecarg(Pager *pPager);

voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int),voID *pCodecArg );

//加密/解密函数,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int DWPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageheader;

pageheader = DATA_TO_PGHDR(data);

if (pageheader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0,pageheader->pPager,pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

DWPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static voID * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NulL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)

{

unsigned char * hKey = NulL;

int j;

if( pKey == NulL || nKeyLen == 0 )

{

return NulL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NulL )

{

return NulL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen,DB_KEY_padding,j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey,DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock,sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

}

memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

voID sqlite3pager_set_codec(

Pager *pPager,

voID *(*xCodec)(voID*,

voID *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,int nKey)

{

return sqlite3_key_interop(db,nKey);

}

int sqlite3_rekey(sqlite3 *db,int nKey)

{

return sqlite3_rekey_interop(db,nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)

{

int rc = sqlITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

if (!pBlock) return sqlITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return sqlITE_OK; //没有加密

memcpy(pBlock->ReadKey,&hKey,16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey,nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NulL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);

rc = sqlITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey,nKeySize);

int rc = sqlITE_ERROR;

if (!pBlock && !hKey) return sqlITE_OK;

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey,p,NulL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt,1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

voID *pPage;

Pgno n;

for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p,n,&pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p,NulL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)

{

return sqlite3CodecAttach(db,nKeySize);

}

// 释放与一个页相关的加密块

voID sqlite3pager_free_codecarg(voID *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef sqlITE_HAS_CODEC


五、 后记
写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光。以示对我劳动的肯定。

总结

以上是内存溢出为你收集整理的董淳光SQLITE3使用总结全部内容,希望文章能够帮你解决董淳光SQLITE3使用总结所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

)
File: /www/wwwroot/outofmemory.cn/tmp/route_read.php, Line: 126, InsideLink()
File: /www/wwwroot/outofmemory.cn/tmp/index.inc.php, Line: 165, include(/www/wwwroot/outofmemory.cn/tmp/route_read.php)
File: /www/wwwroot/outofmemory.cn/index.php, Line: 30, include(/www/wwwroot/outofmemory.cn/tmp/index.inc.php)
Error[8]: Undefined offset: 226, File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 121
File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 473, decode(

概述董淳光SQLITE3使用总结(1) 2008年08月07日 星期四 9:32 sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你 *** 作数据库。 sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、 董淳光sqlite3使用总结(1) 2008年08月07日 星期四 9:32

sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准SQL语句(以char *类型)给sqlite函数,sqlite就会为你 *** 作数据库。

sqlite跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。

sqlite不需要任何数据库引擎,这意味着如果你需要sqlite来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。

下面开始介绍数据库基本 *** 作。

(1)基本流程

i.1关键数据结构

sqlite里最常用到的是sqlite3 *类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要 *** 作的数据库。下面再详细介绍。

i.2打开数据库

int sqlite3_open(文件名,sqlite3 ** );

用这个函数开始数据库 *** 作。

需要传入两个参数,一是数据库文件名,比如:c:\DongChunGuang_Database.db。

文件名不需要一定存在,如果此文件不存在,sqlite会自动建立它。如果它存在,就尝试把它当数据库文件来打开。

sqlite3 **参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示 *** 作是否正确,如果是sqlITE_OK则表示 *** 作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考sqlite3.h文件。里面有详细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

下面给段简单的代码:

extern"C"

{

#include"./sqlite3.h"

};

int main( int,char** )

{

sqlite3 * db = NulL;//声明sqlite关键结构指针

int result;

//打开数据库

//需要传入db这个指针的指针,因为sqlite3_open函数要为这个指针分配内存,还要让db指针指向这个内存区

result = sqlite3_open(“c:\Dcg_database.db”,&db );

if( result !=sqlITE_OK)

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return0;

}

这就是一次数据库 *** 作过程。



董淳光之sqlite3 使用总结(2) 2008年08月07日 星期四 9:35

(2) SQL语句 *** 作
本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行SQL语句

int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,voID *,char **errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)结尾。

第4个参数voID * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NulL。等下我们再看回调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 voID * 这两个位置都可以填 NulL。填NulL表示你不需要回调。比如你做 insert *** 作,做 delete *** 作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(voID*,int,char**,char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( voID * para,int n_column,char ** column_value,char ** column_name )

{

//para是你在 sqlite3_exec 里传入的 voID * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是voID*类型,必须强制转换成你的类型才可用)。然后 *** 作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以 //char ** column_name 跟 column_value是对应的,表示这个字段的字段名称结尾)

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段\n”,n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,column_name[i],column_value[i] );

}

printf( “------------------\n“ );

return 0;

}

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//创建一个测试表,表名叫 Mytable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db,“create table Mytable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NulL,errmsg );

if(result != sqlITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );

}

//插入一些记录

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘走路’ )”,errmsg );

if(result != sqlITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );

}

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘骑单车’ )”,“insert into Mytable_1( name ) values ( ‘坐汽车’ )”,errmsg );

}

//开始查询数据库

result = sqlite3_exec( db,“select * from Mytable_1”,LoadMyInfo,errmsg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本 *** 作。

有这些知识,基本上可以应付很多数据库 *** 作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select *** 作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。

int sqlite3_get_table(sqlite3*,char ***resultp,int *nrow,int *ncolumn,char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。结尾的char *字符串。

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

char **dbResult; //是 char ** 类型,两个*号

int nRow,nColumn;

int i,j;

int index;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//假设前面已经创建了 Mytable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***

result = sqlite3_get_table( db,&dbResult,&nRow,&nColumn,&errmsg );

if( sqlITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据

printf( “查到%d条记录\n”,nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录\n”,i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,dbResult[j],dbResult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示

}

printf( “-------\n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

(2)

sqlite *** 作二进制数据需要用一个辅助的数据类型:

写入二进制

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

然后,把一个SQL语句解析到stat结构里去: *** 作二进制

sqlite3_stmt *。

这个数据类型记录了一个“SQL语句”。为什么我把 “SQL语句” 用双引号引起来?因为你可以把sqlite3_stmt *所表示的内容看成是SQL语句,但是实际上它不是我们所熟知的SQL语句。它是一个已经把SQL语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到sqlite3_stmt结构里可不能直接memcpy,也不能像std::string那样用+号。必须用sqlite提供的函数来插入。

i.1

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是blob类型。我假设有这么一张表:

create table Tbl_2( ID integer,file_contentblob )

首先声明

sqlite3_stmt * stat;

上面的函数完成SQL语句的解析。第一个参数跟前面一样,是个sqlite3 *类型变量,第二个参数是一个SQL语句。

sqlite3_prepare( db,这个SQL语句特别之处在于values里面有个?号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。insert into Tbl_2( ID,file_content) values( 10,? )第三个参数我写的是-1,这个参数含义是前面SQL语句的长度。如果小于0,sqlite会自动计算它的长度(把SQL语句当成以第四个参数是sqlite3_stmt的指针的指针。解析以后的SQL语句就放在这个结构里。结尾的字符串)。,-1,&stat,0 );

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是

sqlITE_OK

且stat不为NulL),那么下面就可以开始插入二进制数据。

int

//pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

sqlite3_bind_blob( stat,1,pdata,(这个函数一共有5个参数。)(length_of_data_in_bytes),NulL );第1个参数:是前面prepare得到的sqlite3_stmt *类型变量。第2个参数:?号的索引。前面prepare的SQL语句里有一个?号,假如有多个?号怎么插入?方法就是改变bind_blob函数第2个参数。这个参数我写1,表示这里插入的值要替换stat的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个bind_blob语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NulL,需要释放的内存自己用代码来释放。

bind完了之后,二进制数据就进入了你的“SQL语句”里了。你现在可以把它保存到数据库里:

通过这个语句,stat表示的SQL语句就被写到了数据库里。

最后,要把sqlite3_stmt结构给释放:

//

把刚才分配的内容析构掉

int result = sqlite3_step( stat );

读出二进制

然后,把一个SQL语句解析到stat结构里去:

sqlite3_finalize( stat );当prepare成功之后(返回值是

i.2sqlITE_OK

下面说读二进制的步骤。

跟前面一样,先声明sqlite3_stmt *类型变量:

sqlite3_stmt * stat;

),开始查询数据。

sqlite3_prepare( db,这一句的返回值是select * from Tbl_2”,0 );

sqlITE_ROW时表示成功(不是sqlITE_OK

int result = sqlite3_step( stat );

)。你可以循环执行sqlite3_step函数,一次step查询出一条记录。直到返回值不为sqlITE_ROW时表示查询结束。然后开始获取第一个字段:ID的值。ID是个整数,用下面这个语句获取它的值:

//第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0下面开始获取

这样就得到了二进制的值。

int ID = sqlite3_column_int( stat,0 );把pfileContent的内容保存出来之后,不要忘了释放sqlite3_stmt结构://

把刚才分配的内容析构掉file_content的值,因为file_content是二进制,因此我需要得到它的指针,还有它的长度:

const voID * pfileContent = sqlite3_column_blob( stat,1 );

int len = sqlite3_column_bytes( stat,1 );

sqlite3_stmt

这样,stat结构又成为sqlite3_prepare完成时的状态,你可以重新为它bind内容。

sqlite3_finalize( stat );

i.3重复使用[+++]结构

如果你需要重复使用sqlite3_prepare解析好的sqlite3_stmt结构,需要用函数:sqlite3_reset。

result = sqlite3_reset(stat);

[+++]


董淳光之sqlite3 使用总结(3) 2008年08月07日 星期四 9:39

(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。

通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个 *** 作是很慢的。因为时间都花在了开始事务、提交事务上。

你可以把这些同类 *** 作做成一个事务,这样如果 *** 作错误,还能够回滚事务。

事务的 *** 作没有特别的接口函数,它就是一个普通的 sql 语句而已:

分别如下:

int result;

result = sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务

result = sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务

result = sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务

一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我 *** 作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

i.1 必要的宏

通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 sqlITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef sqlITE_HAS_CODEC

#define sqlITE_HAS_CODEC

#endif

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是 *** 作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。

定义了这个宏,一些被 sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用

Fatal error LNK1120: 4 个无法解析的外部命令

这是正常的,因为sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

i.2 自己实现加解密接口函数

如果真要我从一份www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_sqlITE_CRYPT_FUNC_

#define DCG_sqlITE_CRYPT_FUNC_

/***********

董淳光写的 sqlITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define sqlITE_DEFAulT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef sqlITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

voID sqlite3pager_free_codecarg(voID *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that ThreadData.nAlloc can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef sqlITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。


i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库 *** 作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面 *** 作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db,"dcg",3 );

//修改密码

i = sqlite3_rekey( db,0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何 *** 作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 sqlITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db,0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef sqlITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock,*LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_padding /*密钥位数不足时补充的字符*/

#define DB_KEY_padding 0x33 /*密钥位数不足时补充的字符*/

#endif


/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

voID sqlite3CodecGetKey(sqlite3* db,int nDB,voID** Key,int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,const voID *pKey,int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

voID sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db,int nKey);

int sqlite3_rekey(sqlite3 *db,int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);

//加密/解密函数,被pager调用

voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode);

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize);

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock);

static voID * sqlite3pager_get_codecarg(Pager *pPager);

voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int),voID *pCodecArg );

//加密/解密函数,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int DWPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageheader;

pageheader = DATA_TO_PGHDR(data);

if (pageheader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0,pageheader->pPager,pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

DWPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static voID * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NulL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)

{

unsigned char * hKey = NulL;

int j;

if( pKey == NulL || nKeyLen == 0 )

{

return NulL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NulL )

{

return NulL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen,DB_KEY_padding,j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey,DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock,sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

}

memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

voID sqlite3pager_set_codec(

Pager *pPager,

voID *(*xCodec)(voID*,

voID *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,int nKey)

{

return sqlite3_key_interop(db,nKey);

}

int sqlite3_rekey(sqlite3 *db,int nKey)

{

return sqlite3_rekey_interop(db,nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)

{

int rc = sqlITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

if (!pBlock) return sqlITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return sqlITE_OK; //没有加密

memcpy(pBlock->ReadKey,&hKey,16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey,nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NulL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);

rc = sqlITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey,nKeySize);

int rc = sqlITE_ERROR;

if (!pBlock && !hKey) return sqlITE_OK;

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey,p,NulL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt,1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

voID *pPage;

Pgno n;

for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p,n,&pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p,NulL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)

{

return sqlite3CodecAttach(db,nKeySize);

}

// 释放与一个页相关的加密块

voID sqlite3pager_free_codecarg(voID *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef sqlITE_HAS_CODEC


五、 后记
写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光。以示对我劳动的肯定。

总结

以上是内存溢出为你收集整理的董淳光SQLITE3使用总结全部内容,希望文章能够帮你解决董淳光SQLITE3使用总结所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

)
File: /www/wwwroot/outofmemory.cn/tmp/route_read.php, Line: 126, InsideLink()
File: /www/wwwroot/outofmemory.cn/tmp/index.inc.php, Line: 165, include(/www/wwwroot/outofmemory.cn/tmp/route_read.php)
File: /www/wwwroot/outofmemory.cn/index.php, Line: 30, include(/www/wwwroot/outofmemory.cn/tmp/index.inc.php)
Error[8]: Undefined offset: 227, File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 121
File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 473, decode(

概述董淳光SQLITE3使用总结(1) 2008年08月07日 星期四 9:32 sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你 *** 作数据库。 sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、 董淳光sqlite3使用总结(1) 2008年08月07日 星期四 9:32

sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准SQL语句(以char *类型)给sqlite函数,sqlite就会为你 *** 作数据库。

sqlite跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。

sqlite不需要任何数据库引擎,这意味着如果你需要sqlite来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。

下面开始介绍数据库基本 *** 作。

(1)基本流程

i.1关键数据结构

sqlite里最常用到的是sqlite3 *类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要 *** 作的数据库。下面再详细介绍。

i.2打开数据库

int sqlite3_open(文件名,sqlite3 ** );

用这个函数开始数据库 *** 作。

需要传入两个参数,一是数据库文件名,比如:c:\DongChunGuang_Database.db。

文件名不需要一定存在,如果此文件不存在,sqlite会自动建立它。如果它存在,就尝试把它当数据库文件来打开。

sqlite3 **参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示 *** 作是否正确,如果是sqlITE_OK则表示 *** 作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考sqlite3.h文件。里面有详细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

下面给段简单的代码:

extern"C"

{

#include"./sqlite3.h"

};

int main( int,char** )

{

sqlite3 * db = NulL;//声明sqlite关键结构指针

int result;

//打开数据库

//需要传入db这个指针的指针,因为sqlite3_open函数要为这个指针分配内存,还要让db指针指向这个内存区

result = sqlite3_open(“c:\Dcg_database.db”,&db );

if( result !=sqlITE_OK)

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return0;

}

这就是一次数据库 *** 作过程。



董淳光之sqlite3 使用总结(2) 2008年08月07日 星期四 9:35

(2) SQL语句 *** 作
本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行SQL语句

int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,voID *,char **errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)结尾。

第4个参数voID * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NulL。等下我们再看回调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 voID * 这两个位置都可以填 NulL。填NulL表示你不需要回调。比如你做 insert *** 作,做 delete *** 作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(voID*,int,char**,char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( voID * para,int n_column,char ** column_value,char ** column_name )

{

//para是你在 sqlite3_exec 里传入的 voID * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是voID*类型,必须强制转换成你的类型才可用)。然后 *** 作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以 //char ** column_name 跟 column_value是对应的,表示这个字段的字段名称结尾)

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段\n”,n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,column_name[i],column_value[i] );

}

printf( “------------------\n“ );

return 0;

}

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//创建一个测试表,表名叫 Mytable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db,“create table Mytable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NulL,errmsg );

if(result != sqlITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );

}

//插入一些记录

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘走路’ )”,errmsg );

if(result != sqlITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );

}

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘骑单车’ )”,“insert into Mytable_1( name ) values ( ‘坐汽车’ )”,errmsg );

}

//开始查询数据库

result = sqlite3_exec( db,“select * from Mytable_1”,LoadMyInfo,errmsg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本 *** 作。

有这些知识,基本上可以应付很多数据库 *** 作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select *** 作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。

int sqlite3_get_table(sqlite3*,char ***resultp,int *nrow,int *ncolumn,char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。结尾的char *字符串。

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

char **dbResult; //是 char ** 类型,两个*号

int nRow,nColumn;

int i,j;

int index;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//假设前面已经创建了 Mytable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***

result = sqlite3_get_table( db,&dbResult,&nRow,&nColumn,&errmsg );

if( sqlITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据

printf( “查到%d条记录\n”,nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录\n”,i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,dbResult[j],dbResult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示

}

printf( “-------\n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

(2)

sqlite *** 作二进制数据需要用一个辅助的数据类型:

写入二进制

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

然后,把一个SQL语句解析到stat结构里去: *** 作二进制

sqlite3_stmt *。

这个数据类型记录了一个“SQL语句”。为什么我把 “SQL语句” 用双引号引起来?因为你可以把sqlite3_stmt *所表示的内容看成是SQL语句,但是实际上它不是我们所熟知的SQL语句。它是一个已经把SQL语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到sqlite3_stmt结构里可不能直接memcpy,也不能像std::string那样用+号。必须用sqlite提供的函数来插入。

i.1

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是blob类型。我假设有这么一张表:

create table Tbl_2( ID integer,file_contentblob )

首先声明

sqlite3_stmt * stat;

上面的函数完成SQL语句的解析。第一个参数跟前面一样,是个sqlite3 *类型变量,第二个参数是一个SQL语句。

sqlite3_prepare( db,这个SQL语句特别之处在于values里面有个?号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。insert into Tbl_2( ID,file_content) values( 10,? )第三个参数我写的是-1,这个参数含义是前面SQL语句的长度。如果小于0,sqlite会自动计算它的长度(把SQL语句当成以第四个参数是sqlite3_stmt的指针的指针。解析以后的SQL语句就放在这个结构里。结尾的字符串)。,-1,&stat,0 );

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是

sqlITE_OK

且stat不为NulL),那么下面就可以开始插入二进制数据。

int

//pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

sqlite3_bind_blob( stat,1,pdata,(这个函数一共有5个参数。)(length_of_data_in_bytes),NulL );第1个参数:是前面prepare得到的sqlite3_stmt *类型变量。第2个参数:?号的索引。前面prepare的SQL语句里有一个?号,假如有多个?号怎么插入?方法就是改变bind_blob函数第2个参数。这个参数我写1,表示这里插入的值要替换stat的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个bind_blob语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NulL,需要释放的内存自己用代码来释放。

bind完了之后,二进制数据就进入了你的“SQL语句”里了。你现在可以把它保存到数据库里:

通过这个语句,stat表示的SQL语句就被写到了数据库里。

最后,要把sqlite3_stmt结构给释放:

//

把刚才分配的内容析构掉

int result = sqlite3_step( stat );

读出二进制

然后,把一个SQL语句解析到stat结构里去:

sqlite3_finalize( stat );当prepare成功之后(返回值是

i.2sqlITE_OK

下面说读二进制的步骤。

跟前面一样,先声明sqlite3_stmt *类型变量:

sqlite3_stmt * stat;

),开始查询数据。

sqlite3_prepare( db,这一句的返回值是select * from Tbl_2”,0 );

sqlITE_ROW时表示成功(不是sqlITE_OK

int result = sqlite3_step( stat );

)。你可以循环执行sqlite3_step函数,一次step查询出一条记录。直到返回值不为sqlITE_ROW时表示查询结束。然后开始获取第一个字段:ID的值。ID是个整数,用下面这个语句获取它的值:

//第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0下面开始获取

这样就得到了二进制的值。

int ID = sqlite3_column_int( stat,0 );把pfileContent的内容保存出来之后,不要忘了释放sqlite3_stmt结构://

把刚才分配的内容析构掉file_content的值,因为file_content是二进制,因此我需要得到它的指针,还有它的长度:

const voID * pfileContent = sqlite3_column_blob( stat,1 );

int len = sqlite3_column_bytes( stat,1 );

sqlite3_stmt

这样,stat结构又成为sqlite3_prepare完成时的状态,你可以重新为它bind内容。

sqlite3_finalize( stat );

i.3重复使用结构

如果你需要重复使用sqlite3_prepare解析好的sqlite3_stmt结构,需要用函数:sqlite3_reset。

result = sqlite3_reset(stat);

[+++]


董淳光之sqlite3 使用总结(3) 2008年08月07日 星期四 9:39

(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。

通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个 *** 作是很慢的。因为时间都花在了开始事务、提交事务上。

你可以把这些同类 *** 作做成一个事务,这样如果 *** 作错误,还能够回滚事务。

事务的 *** 作没有特别的接口函数,它就是一个普通的 sql 语句而已:

分别如下:

int result;

result = sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务

result = sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务

result = sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务

一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我 *** 作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

i.1 必要的宏

通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 sqlITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef sqlITE_HAS_CODEC

#define sqlITE_HAS_CODEC

#endif

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是 *** 作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。

定义了这个宏,一些被 sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用

Fatal error LNK1120: 4 个无法解析的外部命令

这是正常的,因为sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

i.2 自己实现加解密接口函数

如果真要我从一份www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_sqlITE_CRYPT_FUNC_

#define DCG_sqlITE_CRYPT_FUNC_

/***********

董淳光写的 sqlITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define sqlITE_DEFAulT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef sqlITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

voID sqlite3pager_free_codecarg(voID *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that ThreadData.nAlloc can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef sqlITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。


i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库 *** 作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面 *** 作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db,"dcg",3 );

//修改密码

i = sqlite3_rekey( db,0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何 *** 作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 sqlITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db,0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef sqlITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock,*LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_padding /*密钥位数不足时补充的字符*/

#define DB_KEY_padding 0x33 /*密钥位数不足时补充的字符*/

#endif


/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

voID sqlite3CodecGetKey(sqlite3* db,int nDB,voID** Key,int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,const voID *pKey,int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

voID sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db,int nKey);

int sqlite3_rekey(sqlite3 *db,int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);

//加密/解密函数,被pager调用

voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode);

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize);

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock);

static voID * sqlite3pager_get_codecarg(Pager *pPager);

voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int),voID *pCodecArg );

//加密/解密函数,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int DWPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageheader;

pageheader = DATA_TO_PGHDR(data);

if (pageheader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0,pageheader->pPager,pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

DWPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static voID * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NulL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)

{

unsigned char * hKey = NulL;

int j;

if( pKey == NulL || nKeyLen == 0 )

{

return NulL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NulL )

{

return NulL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen,DB_KEY_padding,j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey,DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock,sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

}

memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

voID sqlite3pager_set_codec(

Pager *pPager,

voID *(*xCodec)(voID*,

voID *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,int nKey)

{

return sqlite3_key_interop(db,nKey);

}

int sqlite3_rekey(sqlite3 *db,int nKey)

{

return sqlite3_rekey_interop(db,nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)

{

int rc = sqlITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

if (!pBlock) return sqlITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return sqlITE_OK; //没有加密

memcpy(pBlock->ReadKey,&hKey,16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey,nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NulL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);

rc = sqlITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey,nKeySize);

int rc = sqlITE_ERROR;

if (!pBlock && !hKey) return sqlITE_OK;

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey,p,NulL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt,1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

voID *pPage;

Pgno n;

for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p,n,&pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p,NulL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)

{

return sqlite3CodecAttach(db,nKeySize);

}

// 释放与一个页相关的加密块

voID sqlite3pager_free_codecarg(voID *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef sqlITE_HAS_CODEC


五、 后记
写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光。以示对我劳动的肯定。

总结

以上是内存溢出为你收集整理的董淳光SQLITE3使用总结全部内容,希望文章能够帮你解决董淳光SQLITE3使用总结所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

)
File: /www/wwwroot/outofmemory.cn/tmp/route_read.php, Line: 126, InsideLink()
File: /www/wwwroot/outofmemory.cn/tmp/index.inc.php, Line: 165, include(/www/wwwroot/outofmemory.cn/tmp/route_read.php)
File: /www/wwwroot/outofmemory.cn/index.php, Line: 30, include(/www/wwwroot/outofmemory.cn/tmp/index.inc.php)
董淳光SQLITE3使用总结_sql_内存溢出

董淳光SQLITE3使用总结

董淳光SQLITE3使用总结,第1张

概述董淳光SQLITE3使用总结(1) 2008年08月07日 星期四 9:32 sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你 *** 作数据库。 sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、 董淳光sqlite3使用总结(1) 2008年08月07日 星期四 9:32

sqlite提供的是一些C函数接口,你可以用这些函数 *** 作数据库。通过使用这些接口,传递一些标准SQL语句(以char *类型)给sqlite函数,sqlite就会为你 *** 作数据库。

sqlite跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。

sqlite不需要任何数据库引擎,这意味着如果你需要sqlite来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。

下面开始介绍数据库基本 *** 作。

(1)基本流程

i.1关键数据结构

sqlite里最常用到的是sqlite3 *类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要 *** 作的数据库。下面再详细介绍。

i.2打开数据库

int sqlite3_open(文件名,sqlite3 ** );

用这个函数开始数据库 *** 作。

需要传入两个参数,一是数据库文件名,比如:c:\DongChunGuang_Database.db。

文件名不需要一定存在,如果此文件不存在,sqlite会自动建立它。如果它存在,就尝试把它当数据库文件来打开。

sqlite3 **参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示 *** 作是否正确,如果是sqlITE_OK则表示 *** 作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考sqlite3.h文件。里面有详细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

下面给段简单的代码:

extern"C"

{

#include"./sqlite3.h"

};

int main( int,char** )

{

sqlite3 * db = NulL;//声明sqlite关键结构指针

int result;

//打开数据库

//需要传入db这个指针的指针,因为sqlite3_open函数要为这个指针分配内存,还要让db指针指向这个内存区

result = sqlite3_open(“c:\Dcg_database.db”,&db );

if( result !=sqlITE_OK)

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return0;

}

这就是一次数据库 *** 作过程。



董淳光之sqlite3 使用总结(2) 2008年08月07日 星期四 9:35

(2) SQL语句 *** 作
本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行SQL语句

int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,voID *,char **errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)结尾。

第4个参数voID * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NulL。等下我们再看回调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 voID * 这两个位置都可以填 NulL。填NulL表示你不需要回调。比如你做 insert *** 作,做 delete *** 作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(voID*,int,char**,char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( voID * para,int n_column,char ** column_value,char ** column_name )

{

//para是你在 sqlite3_exec 里传入的 voID * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是voID*类型,必须强制转换成你的类型才可用)。然后 *** 作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以 //char ** column_name 跟 column_value是对应的,表示这个字段的字段名称结尾)

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段\n”,n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,column_name[i],column_value[i] );

}

printf( “------------------\n“ );

return 0;

}

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//创建一个测试表,表名叫 Mytable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db,“create table Mytable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NulL,errmsg );

if(result != sqlITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );

}

//插入一些记录

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘走路’ )”,errmsg );

if(result != sqlITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );

}

result = sqlite3_exec( db,“insert into Mytable_1( name ) values ( ‘骑单车’ )”,“insert into Mytable_1( name ) values ( ‘坐汽车’ )”,errmsg );

}

//开始查询数据库

result = sqlite3_exec( db,“select * from Mytable_1”,LoadMyInfo,errmsg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本 *** 作。

有这些知识,基本上可以应付很多数据库 *** 作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select *** 作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。

int sqlite3_get_table(sqlite3*,char ***resultp,int *nrow,int *ncolumn,char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。结尾的char *字符串。

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int,char ** )

{

sqlite3 * db;

int result;

char * errmsg = NulL;

char **dbResult; //是 char ** 类型,两个*号

int nRow,nColumn;

int i,j;

int index;

result = sqlite3_open( “c:\Dcg_database.db”,&db );

if( result != sqlITE_OK )

{

//数据库打开失败

return -1;

}

//数据库 *** 作代码

//假设前面已经创建了 Mytable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***

result = sqlite3_get_table( db,&dbResult,&nRow,&nColumn,&errmsg );

if( sqlITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据

printf( “查到%d条记录\n”,nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录\n”,i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%s\n”,dbResult[j],dbResult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示

}

printf( “-------\n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

(2)

sqlite *** 作二进制数据需要用一个辅助的数据类型:

写入二进制

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

然后,把一个SQL语句解析到stat结构里去: *** 作二进制

sqlite3_stmt *。

这个数据类型记录了一个“SQL语句”。为什么我把 “SQL语句” 用双引号引起来?因为你可以把sqlite3_stmt *所表示的内容看成是SQL语句,但是实际上它不是我们所熟知的SQL语句。它是一个已经把SQL语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到sqlite3_stmt结构里可不能直接memcpy,也不能像std::string那样用+号。必须用sqlite提供的函数来插入。

i.1

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是blob类型。我假设有这么一张表:

create table Tbl_2( ID integer,file_contentblob )

首先声明

sqlite3_stmt * stat;

上面的函数完成SQL语句的解析。第一个参数跟前面一样,是个sqlite3 *类型变量,第二个参数是一个SQL语句。

sqlite3_prepare( db,这个SQL语句特别之处在于values里面有个?号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。insert into Tbl_2( ID,file_content) values( 10,? )第三个参数我写的是-1,这个参数含义是前面SQL语句的长度。如果小于0,sqlite会自动计算它的长度(把SQL语句当成以第四个参数是sqlite3_stmt的指针的指针。解析以后的SQL语句就放在这个结构里。结尾的字符串)。,-1,&stat,0 );

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是

sqlITE_OK

且stat不为NulL),那么下面就可以开始插入二进制数据。

int

//pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

sqlite3_bind_blob( stat,1,pdata,(这个函数一共有5个参数。)(length_of_data_in_bytes),NulL );第1个参数:是前面prepare得到的sqlite3_stmt *类型变量。第2个参数:?号的索引。前面prepare的SQL语句里有一个?号,假如有多个?号怎么插入?方法就是改变bind_blob函数第2个参数。这个参数我写1,表示这里插入的值要替换stat的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个bind_blob语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NulL,需要释放的内存自己用代码来释放。

bind完了之后,二进制数据就进入了你的“SQL语句”里了。你现在可以把它保存到数据库里:

通过这个语句,stat表示的SQL语句就被写到了数据库里。

最后,要把sqlite3_stmt结构给释放:

//

把刚才分配的内容析构掉

int result = sqlite3_step( stat );

读出二进制

然后,把一个SQL语句解析到stat结构里去:

sqlite3_finalize( stat );当prepare成功之后(返回值是

i.2sqlITE_OK

下面说读二进制的步骤。

跟前面一样,先声明sqlite3_stmt *类型变量:

sqlite3_stmt * stat;

),开始查询数据。

sqlite3_prepare( db,这一句的返回值是select * from Tbl_2”,0 );

sqlITE_ROW时表示成功(不是sqlITE_OK

int result = sqlite3_step( stat );

)。你可以循环执行sqlite3_step函数,一次step查询出一条记录。直到返回值不为sqlITE_ROW时表示查询结束。然后开始获取第一个字段:ID的值。ID是个整数,用下面这个语句获取它的值:

//第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0下面开始获取

这样就得到了二进制的值。

int ID = sqlite3_column_int( stat,0 );把pfileContent的内容保存出来之后,不要忘了释放sqlite3_stmt结构://

把刚才分配的内容析构掉file_content的值,因为file_content是二进制,因此我需要得到它的指针,还有它的长度:

const voID * pfileContent = sqlite3_column_blob( stat,1 );

int len = sqlite3_column_bytes( stat,1 );

sqlite3_stmt

这样,stat结构又成为sqlite3_prepare完成时的状态,你可以重新为它bind内容。

sqlite3_finalize( stat );

i.3重复使用结构

如果你需要重复使用sqlite3_prepare解析好的sqlite3_stmt结构,需要用函数:sqlite3_reset。

result = sqlite3_reset(stat);


董淳光之sqlite3 使用总结(3) 2008年08月07日 星期四 9:39

(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。

通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个 *** 作是很慢的。因为时间都花在了开始事务、提交事务上。

你可以把这些同类 *** 作做成一个事务,这样如果 *** 作错误,还能够回滚事务。

事务的 *** 作没有特别的接口函数,它就是一个普通的 sql 语句而已:

分别如下:

int result;

result = sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务

result = sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务

result = sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务

一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我 *** 作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

i.1 必要的宏

通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 sqlITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef sqlITE_HAS_CODEC

#define sqlITE_HAS_CODEC

#endif

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是 *** 作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。

定义了这个宏,一些被 sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用

Fatal error LNK1120: 4 个无法解析的外部命令

这是正常的,因为sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

i.2 自己实现加解密接口函数

如果真要我从一份www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_sqlITE_CRYPT_FUNC_

#define DCG_sqlITE_CRYPT_FUNC_

/***********

董淳光写的 sqlITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData,unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define sqlITE_DEFAulT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef sqlITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

voID sqlite3pager_free_codecarg(voID *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that ThreadData.nAlloc can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef sqlITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。


i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库 *** 作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面 *** 作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db,"dcg",3 );

//修改密码

i = sqlite3_rekey( db,0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何 *** 作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 sqlITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db,0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef sqlITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock,*LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_padding /*密钥位数不足时补充的字符*/

#define DB_KEY_padding 0x33 /*密钥位数不足时补充的字符*/

#endif


/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

voID sqlite3CodecGetKey(sqlite3* db,int nDB,voID** Key,int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,const voID *pKey,int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

voID sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db,int nKey);

int sqlite3_rekey(sqlite3 *db,int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);

//加密/解密函数,被pager调用

voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode);

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize);

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock);

static voID * sqlite3pager_get_codecarg(Pager *pPager);

voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int),voID *pCodecArg );

//加密/解密函数,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int DWPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageheader;

pageheader = DATA_TO_PGHDR(data);

if (pageheader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0,pageheader->pPager,pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

DWPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

DWPageSize = pBlock->PageSize;

My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static voID DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static voID * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NulL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)

{

unsigned char * hKey = NulL;

int j;

if( pKey == NulL || nKeyLen == 0 )

{

return NulL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NulL )

{

return NulL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen,DB_KEY_padding,j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey,DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock,sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

}

memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

voID sqlite3pager_set_codec(

Pager *pPager,

voID *(*xCodec)(voID*,

voID *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,int nKey)

{

return sqlite3_key_interop(db,nKey);

}

int sqlite3_rekey(sqlite3 *db,int nKey)

{

return sqlite3_rekey_interop(db,nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)

{

int rc = sqlITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

if (!pBlock) return sqlITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return sqlITE_OK; //没有加密

memcpy(pBlock->ReadKey,&hKey,16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey,nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NulL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);

rc = sqlITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey,nKeySize);

int rc = sqlITE_ERROR;

if (!pBlock && !hKey) return sqlITE_OK;

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey,p,NulL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt,1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

voID *pPage;

Pgno n;

for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p,n,&pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p,NulL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)

{

return sqlite3CodecAttach(db,nKeySize);

}

// 释放与一个页相关的加密块

voID sqlite3pager_free_codecarg(voID *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef sqlITE_HAS_CODEC


五、 后记
写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光。以示对我劳动的肯定。

总结

以上是内存溢出为你收集整理的董淳光SQLITE3使用总结全部内容,希望文章能够帮你解决董淳光SQLITE3使用总结所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/1175772.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-02
下一篇 2022-06-02

发表评论

登录后才能评论

评论列表(0条)

保存