CREATE VIEW Vote_pairs AS SELECT v1.name as name1,v2.name as name2,... FROM Votes AS v1 JOIN Votes AS v2 ON v1.topic_ID = v2.topic_ID;
并且,在投票表中有大约100k行,跨此视图的查询大约需要3秒钟才能执行.
但是,当我在名称上添加额外的过滤器时:
… ON v1.topic_ID = v2.topic_ID AND v1.name < v2.name;
运行时间翻了四倍,在Vote_pairs上完成查询需要大约12秒.
无论限制的位置如何,此运行时都是一致的…例如,如果将过滤器移动到外部查询的WHERE子句,则查询同样很慢:
SELECT * FROM Vote_pairs WHERE name1 < name2;
这是怎么回事? Postgres的词典比较速度慢吗?这是别的吗?我怎么能提高这个查询的速度?
投票表:
CREATE table Votes ( topic_ID INTEGER REFERENCES topics(ID),name VARCHAR(64),Vote VARCHAR(12))CREATE INDEX Votes_topic_name ON Votes (topic_ID,name);CREATE INDEX Votes_name ON Votes (name);
没有名称过滤器的EXPLAIN ANALYZE的输出:
db=# CREATE OR REPLACE VIEW Vote_pairs ASdb-# SELECTdb-# v1.name as name1,db-# v2.name as name2db-# FROM Votes AS v1db-# JOIN Votes AS v2db-# ON v1.topic_ID = v2.topic_ID;CREATE VIEWdb=# EXPLAIN ANALYZE SELECT * FROM Vote_pairs; query PLAN ----------------------------------------------------------------------------------------------------------------------------- Hash Join (cost=3956.38..71868.56 rows=5147800 wIDth=28) (actual time=51.810..1236.673 rows=5082750 loops=1) Hash Cond: (v1.topic_ID = v2.topic_ID) -> Seq Scan on Votes v1 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.019..18.358 rows=112950 loops=1) -> Hash (cost=1882.50..1882.50 rows=112950 wIDth=18) (actual time=50.671..50.671 rows=112950 loops=1) -> Seq Scan on Votes v2 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.004..20.306 rows=112950 loops=1) Total runtime: 1495.963 ms(6 rows)
并使用过滤器:
db=# CREATE OR REPLACE VIEW Vote_pairs ASdb-# SELECTdb-# v1.name as name1,db-# v2.name as name2db-# FROM Votes AS v1db-# JOIN Votes AS v2db-# ON v1.topic_ID = v2.topic_ID AND v1.name < v2.name;CREATE VIEWdb=# EXPLAIN ANALYZE SELECT * FROM Vote_pairs; query PLAN ----------------------------------------------------------------------------------------------------------------------------- Hash Join (cost=3956.38..84738.06 rows=1715933 wIDth=28) (actual time=66.688..6900.478 rows=2484900 loops=1) Hash Cond: (v1.topic_ID = v2.topic_ID) Join Filter: ((v1.name)::text < (v2.name)::text) -> Seq Scan on Votes v1 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.023..24.539 rows=112950 loops=1) -> Hash (cost=1882.50..1882.50 rows=112950 wIDth=18) (actual time=65.603..65.603 rows=112950 loops=1) -> Seq Scan on Votes v2 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.004..26.756 rows=112950 loops=1) Total runtime: 7048.740 ms(7 rows)
EXPLAIN(ANALYZE,BUFFERS):
db=# EXPLAIN (ANALYZE,BUFFERS) SELECT * FROM Vote_pairs; query PLAN ----------------------------------------------------------------------------------------------------------------------------- Hash Join (cost=3956.38..71345.89 rows=5152008 wIDth=28) (actual time=56.230..1204.522 rows=5082750 loops=1) Hash Cond: (v1.topic_ID = v2.topic_ID) Buffers: shared hit=129 read=1377 written=2,temp read=988 written=974 -> Seq Scan on Votes v1 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.008..20.492 rows=112950 loops=1) Buffers: shared hit=77 read=676 -> Hash (cost=1882.50..1882.50 rows=112950 wIDth=18) (actual time=55.742..55.742 rows=112950 loops=1) Buckets: 2048 Batches: 8 Memory Usage: 752kB Buffers: shared hit=52 read=701 written=2,temp written=480 -> Seq Scan on Votes v2 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.004..22.954 rows=112950 loops=1) Buffers: shared hit=52 read=701 written=2 Total runtime: 1499.302 ms(11 rows)db=# EXPLAIN (ANALYZE,BUFFERS) SELECT * FROM Vote_pairs WHERE name1 > name2; query PLAN ----------------------------------------------------------------------------------------------------------------------------- Hash Join (cost=3956.38..84225.91 rows=1717336 wIDth=28) (actual time=51.214..6422.592 rows=2484900 loops=1) Hash Cond: (v1.topic_ID = v2.topic_ID) Join Filter: ((v1.name)::text > (v2.name)::text) Rows Removed by Join Filter: 2597850 Buffers: shared hit=32 read=1477,temp read=988 written=974 -> Seq Scan on Votes v1 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.008..22.605 rows=112950 loops=1) Buffers: shared hit=27 read=726 -> Hash (cost=1882.50..1882.50 rows=112950 wIDth=18) (actual time=50.678..50.678 rows=112950 loops=1) Buckets: 2048 Batches: 8 Memory Usage: 752kB Buffers: shared hit=2 read=751,temp written=480 -> Seq Scan on Votes v2 (cost=0.00..1882.50 rows=112950 wIDth=18) (actual time=0.005..21.337 rows=112950 loops=1) Buffers: shared hit=2 read=751 Total runtime: 6573.308 ms(13 rows)
杂项说明:
>已经运行了VACCUM FulL和ANALYZE投票
> 8.4.11和9.2.3都以相同的方式运行
SELECT * FROM Vote_pairs WHERE name1 > name2 collate "C";
这应该更快一些,因为它不会考虑特定于语言环境的比较规则.此外,您的解释分析结果表明您的shared_buffers可能设置得太低.
总结以上是内存溢出为你收集整理的PostgreSQL中的词典排序非常慢?全部内容,希望文章能够帮你解决PostgreSQL中的词典排序非常慢?所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)