PostgreSQL的9.6黑科技绽放算法索引

PostgreSQL的9.6黑科技绽放算法索引,第1张

概述介绍《PostgreSQL的9.6黑科技绽放算法索引》开发教程,希望对您有用。

《Postgresql的9.6黑科技绽放算法索引》要点:
本文介绍了Postgresql的9.6黑科技绽放算法索引,希望对您有用。如果有疑问,可以联系我们。

Postgresql 确实是学术界和工业界的璀璨明珠,它总是喜欢将学术界的一些玩意工业化,这次的bloom又是一个代表.

在PG很多的地方都能看到学术的影子,好比pgbench支持产生泊松分布,高斯分布的随机值.

bloom filter是一个有损过滤器,使用有限的比特位存储一些唯一值集合所发生的bits.

通过这些bits可以满足这样的场景需求,给定一个值,判断这个值是否属于这个集合.

例如

create table test(c1 int);

insert into test select trunc(random()*100000) from generate_serIEs(1,10000);

使用所有的 test.c1 值,通过bloom filter算法生成一个值val.

然后给定一个值例如 100,判断100是否在test.c1中.

select * from test where c1=100;

通过bloom filter可以快速得到,不必要遍历表来得到.

判断办法是使用100和val以及统一的bloom算法.

可能得到的成果是true or false.

true表现100在这里面,false表现100不在这里面.

必须注意,由于bloom filter是有损过滤器,并且真的不必定为真,但是假的必定为假.

Postgresql 9.6使用custom access methods接口定义了一个索引接口bloom,使用到它的特性:真的不必定为真,但是假的必定为假.

目前已实现的场景是,支持=查询,但是这个=会包括一些假的值,所以需要recheck.反过来,它如果要支持<>也是很方便的,并且不需要recheck.

使用Postgresql 函数接口也能实现bloom过滤器.

bloom必要m个bit位.

添加元素时,必要k个hash函数,通过每一个hash和传入的值计算得到另一个值([0,m]).

得到的值用于设置对应的bit位为1.

例子

创立一个类型,存储bloom.

CREATE TYPE dumbloom AS (

m integer,-- bit 位数

k integer,-- hash 函数数量

-- Our bit array is actually an array of integers

bits integer[] -- bit

);

创立一个空的bloom,设置false值异常设置为TRUE的概率p,设置期望存储多少个唯一值n .

CREATE FUNCTION dumbloom_empty (

-- 2% false probability

p float8 DEFAulT 0.02,

-- 100k expected uniques

n integer DEFAulT 100000

) RETURNS dumbloom AS

$$

DECLARE

m integer;

k integer;

i integer;

bits integer[];

BEGIN

-- Getting m and k from n and p is some math sorcery

-- See: https://en.wikipedia.org/wiki/Bloom_filter#Optimal_number_of_hash_functions

m := abs(ceil(n * ln(p) / (ln(2) ^ 2)))::integer;

k := round(ln(2) * m / n)::integer;

bits := NulL;

-- Initialize all bits to 0

FOR i in 1 .. ceil(m / 32.0) LOOP

bits := array_append(bits,0);

END LOOP;

RETURN (m,k,bits)::dumbloom;

END;

$$

LANGUAGE 'plpgsql' IMMUtable;

创立一个指纹函数,存储使用K个哈希函数得到的值,存入数组.

CREATE FUNCTION dumbloom_fingerprint (

b dumbloom,

item text

) RETURNS integer[] AS

$$

DECLARE

h1 bigint;

h2 bigint;

i integer;

fingerprint integer[];

BEGIN

h1 := abs(hashtext(upper(item)));

-- If lower(item) and upper(item) are the same,h1 and h2 will be IDentical too,

-- let's add some random salt

h2 := abs(hashtext(lower(item) || 'yo dawg!'));

finger := NulL;

FOR i IN 1 .. b.k LOOP

-- This combinatorial approach works just as well as using k independent

-- hash functions,but is obvIoUsly much faster

-- See: http://www.eecs.harvard.edu/~kirsch/pubs/bbbf/esa06.pdf

fingerprint := array_append(fingerprint,((h1 + i * h2) % b.m)::integer);

END LOOP;

RETURN fingerprint;

END;

$$

LANGUAGE 'plpgsql' IMMUtable;

添加元素的函数

同样也是设置对应的bit为1

CREATE FUNCTION dumbloom_add (

b dumbloom,

item text,

) RETURNS dumbloom AS

$$

DECLARE

i integer;

IDx integer;

BEGIN

IF b IS NulL THEN

b := dumbloom_empty(); -- 生成空bloom

END IF;

FOREACH i IN ARRAY dumbloom_fingerprint(b,item) LOOP -- 设置k个哈希发生的值对应的bit位为1

-- Postgres uses 1-indexing,hence the + 1 here

IDx := i / 32 + 1;

b.bits[IDx] := b.bits[IDx] | (1 << (i % 32));

END LOOP;

RETURN b;

END;

$$

LANGUAGE 'plpgsql' IMMUtable;

是否包括某元素

CREATE FUNCTION dumbloom_contains (

b dumbloom,

item text

) RETURNS boolean AS

$$

DECLARE

i integer;

IDx integer;

BEGIN

IF b IS NulL THEN

RETURN FALSE;

END IF;

FOREACH i IN ARRAY dumbloom_fingerprint(b,item) LOOP -- 计算k个哈希发生的值,判断是否有非1的bit,有则返回false,如果全部为1则返回true.

IDx := i / 32 + 1;

IF NOT (b.bits[IDx] & (1 << (i % 32)))::boolean THEN

RETURN FALSE;

END IF;

END LOOP;

RETURN TRUE;

END;

$$

LANGUAGE 'plpgsql' IMMUtable;

测试

CREATE table t (

users dumbloom

);

INSERT INTO t VALUES (dumbloom_empty());

UPDATE t SET users = dumbloom_add(users,'usmanm');

UPDATE t SET users = dumbloom_add(users,'billyg');

UPDATE t SET users = dumbloom_add(users,'pipeline');

-- This first three will return true

SELECT dumbloom_contains(users,'usmanm') FROM t;

SELECT dumbloom_contains(users,'billyg') FROM t;

SELECT dumbloom_contains(users,'pipeline') FROM t;

-- This will return false because we never added 'unkNown' to the Bloom filter

SELECT dumbloom_contains(users,'unkNown') FROM t;

以上例子来自pipelinedb文档,用C语言写成聚合函数,可以实现流式计算.

https://www.pipelinedb.com/blog/making-postgres-bloom

接下来是Postgresql 9.6的例子,9.6是将它做成了索引,而不是聚合.

(如果有朋友想使用pipelinedb的bloom聚合,可以看看PIPEliNEDB的代码,PORT过来)

postgres=# create table test(ID int);

CREATE table

postgres=# insert into test select trunc(100000000*(random())) from generate_serIEs(1,100000000);

INSERT 0 100000000

postgres=# create index IDx_test_ID on test using bloom(ID);

CREATE INDEX

postgres=# select * from test limit 10;

ID

----------

16567697

17257165

78384532

96331329

62449166

3965065

80439767

54772860

34960167

30594730

(10 rows)

位图扫

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test where ID=16567697;

query PLAN

---------------------------------------------------------------------------------------------------------------------------------

Bitmap Heap Scan on public.test (cost=946080.00..946082.03 rows=2 wIDth=4) (actual time=524.545..561.168 rows=3 loops=1)

Output: ID

Recheck Cond: (test.ID = 16567697)

Rows Removed by Index Recheck: 30870

Heap Blocks: exact=29846

Buffers: shared hit=225925

-> Bitmap Index Scan on IDx_test_ID (cost=0.00..946080.00 rows=2 wIDth=0) (actual time=517.448..517.448 rows=30873 loops=1)

Index Cond: (test.ID = 16567697)

Buffers: shared hit=196079

Planning time: 0.084 ms

Execution time: 561.535 ms

(11 rows)

全表扫

postgres=# explain (analyze,buffers) select * from test where ID=16567697;

query PLAN

--------------------------------------------------------------------------------------------------------------

Seq Scan on public.test (cost=0.00..1692478.00 rows=2 wIDth=4) (actual time=0.017..8270.536 rows=3 loops=1)

Output: ID

Filter: (test.ID = 16567697)

Rows Removed by Filter: 99999997

Buffers: shared hit=442478

Planning time: 0.077 ms

Execution time: 8270.564 ms

(7 rows)

多个字段测试,16个字段,任意测试组合,速度和recheck有关,recheck越少越好.

不仅仅支持and还支持or,只是OR的条件是bitmap的,会慢一些.

postgres=# create table test1(c1 int,c2 int,c3 int,c4 int,c5 int,c6 int,c7 int,c8 int,c9 int,c10 int,c11 int,c12 int,c13 int,c14 int,c15 int,c16 int);

CREATE table

postgres=# insert into test1 select i,i+1,i-1,i+2,i-2,i+3,i-3,i+4,i-4,i+5,i-5,i+6,i-6,i+7,i-7,i+8 from (select trunc(100000000*(random())) i from generate_serIEs(1,10000000)) t;

INSERT 0 10000000

postgres=# create index IDx_test1_1 on test1 using bloom (c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15);

CREATE INDEX

postgres=# \dt+ test1

List of relations

Schema | name | Type | Owner | Size | Description

--------+-------+-------+----------+--------+-------------

public | test1 | table | postgres | 888 MB |

(1 row)

postgres=# \di+ IDx_test1_1

List of relations

Schema | name | Type | Owner | table | Size | Description

--------+-------------+-------+----------+-------+--------+-------------

public | IDx_test1_1 | index | postgres | test1 | 153 MB |

(1 row)

postgres=# select * from test1 limit 10;

c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 | c10 | c11 | c12 | c13 | c14 | c15 | c16

----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------

68747916 | 68747917 | 68747915 | 68747918 | 68747914 | 68747919 | 68747913 | 68747920 | 68747912 | 68747921 | 68747911 | 68747922 | 68747910 | 68747923 | 68747909 | 68747924

36630121 | 36630122 | 36630120 | 36630123 | 36630119 | 36630124 | 36630118 | 36630125 | 36630117 | 36630126 | 36630116 | 36630127 | 36630115 | 36630128 | 36630114 | 36630129

72139701 | 72139702 | 72139700 | 72139703 | 72139699 | 72139704 | 72139698 | 72139705 | 72139697 | 72139706 | 72139696 | 72139707 | 72139695 | 72139708 | 72139694 | 72139709

35950519 | 35950520 | 35950518 | 35950521 | 35950517 | 35950522 | 35950516 | 35950523 | 35950515 | 35950524 | 35950514 | 35950525 | 35950513 | 35950526 | 35950512 | 35950527

15285103 | 15285104 | 15285102 | 15285105 | 15285101 | 15285106 | 15285100 | 15285107 | 15285099 | 15285108 | 15285098 | 15285109 | 15285097 | 15285110 | 15285096 | 15285111

43537916 | 43537917 | 43537915 | 43537918 | 43537914 | 43537919 | 43537913 | 43537920 | 43537912 | 43537921 | 43537911 | 43537922 | 43537910 | 43537923 | 43537909 | 43537924

38702018 | 38702019 | 38702017 | 38702020 | 38702016 | 38702021 | 38702015 | 38702022 | 38702014 | 38702023 | 38702013 | 38702024 | 38702012 | 38702025 | 38702011 | 38702026

59069936 | 59069937 | 59069935 | 59069938 | 59069934 | 59069939 | 59069933 | 59069940 | 59069932 | 59069941 | 59069931 | 59069942 | 59069930 | 59069943 | 59069929 | 59069944

6608034 | 6608035 | 6608033 | 6608036 | 6608032 | 6608037 | 6608031 | 6608038 | 6608030 | 6608039 | 6608029 | 6608040 | 6608028 | 6608041 | 6608027 | 6608042

35486917 | 35486918 | 35486916 | 35486919 | 35486915 | 35486920 | 35486914 | 35486921 | 35486913 | 35486922 | 35486912 | 35486923 | 35486911 | 35486924 | 35486910 | 35486925

(10 rows)

任意字段组合查询都能用上这个索引

postgres=# explain (analyze,buffers) select * from test1 where c8=68747920 and c10=68747921 and c16=68747924 and c7=68747913 and c5=68747914;

query PLAN

-------------------------------------------------------------------------------------------------------------------------------

Bitmap Heap Scan on public.test1 (cost=169609.00..169610.02 rows=1 wIDth=64) (actual time=101.724..102.317 rows=1 loops=1)

Output: c1,c15,c16

Recheck Cond: ((test1.c5 = 68747914) AND (test1.c7 = 68747913) AND (test1.c8 = 68747920) AND (test1.c10 = 68747921))

Rows Removed by Index Recheck: 425

Filter: (test1.c16 = 68747924)

Heap Blocks: exact=425

Buffers: shared hit=20033

-> Bitmap Index Scan on IDx_test1_1 (cost=0.00..169609.00 rows=1 wIDth=0) (actual time=101.636..101.636 rows=426 loops=1)

Index Cond: ((test1.c5 = 68747914) AND (test1.c7 = 68747913) AND (test1.c8 = 68747920) AND (test1.c10 = 68747921))

Buffers: shared hit=19608

Planning time: 0.129 ms

Execution time: 102.364 ms

(12 rows)

postgres=# explain (analyze,buffers) select * from test1 where c8=68747920 and c10=68747921 and c16=68747924 and c7=68747913 and c5=68747914 and c12=68747922;

query PLAN

-------------------------------------------------------------------------------------------------------------------------------------------------------

Bitmap Heap Scan on public.test1 (cost=194609.00..194610.03 rows=1 wIDth=64) (actual time=54.702..54.746 rows=1 loops=1)

Output: c1,c16

Recheck Cond: ((test1.c5 = 68747914) AND (test1.c7 = 68747913) AND (test1.c8 = 68747920) AND (test1.c10 = 68747921) AND (test1.c12 = 68747922))

Rows Removed by Index Recheck: 27

Filter: (test1.c16 = 68747924)

Heap Blocks: exact=28

Buffers: shared hit=19636

-> Bitmap Index Scan on IDx_test1_1 (cost=0.00..194609.00 rows=1 wIDth=0) (actual time=54.667..54.667 rows=28 loops=1)

Index Cond: ((test1.c5 = 68747914) AND (test1.c7 = 68747913) AND (test1.c8 = 68747920) AND (test1.c10 = 68747921) AND (test1.c12 = 68747922))

Buffers: shared hit=19608

Planning time: 0.141 ms

Execution time: 54.814 ms

(12 rows)

如果使用其他的索引办法,任意条件组合查询,需要为每一种组合创建一个索引来支持.

而使用bloom索引办法,只需要创建一个索引就够了.http://www.postgresql.org/docs/9.6/static/bloom.HTML

更多深度技术内容,请存眷云栖社区微信公众号:yunqiinsight.

内存溢出PHP培训学院每天发布《Postgresql的9.6黑科技绽放算法索引》等实战技能,PHP、MysqL、liNUX、APP、Js,CSS全面培养人才。

总结

以上是内存溢出为你收集整理的PostgreSQL的9.6黑科技绽放算法索引全部内容,希望文章能够帮你解决PostgreSQL的9.6黑科技绽放算法索引所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/1182667.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-02
下一篇 2022-06-02

发表评论

登录后才能评论

评论列表(0条)

保存