功能测试的测试数据,一般是 手工构造 。
如果需要构造大量数据,要分析测试需求,准确清晰的分析之后,再对输入的测试数据进行分析。
一方面,我们要求测试数据要尽可能的与生产环境的数据相一致,尽可能是有意义的数据,可以通过分析使用现有系统的数据或根据业务特点来构造数据。
另一方面,我们要求测试数据输入要满足输入限制规则,尽可能覆盖到满足规则的不同类型的数据。
生成测试数据的方法:
①编写sql脚本(存储过程)在数据库端直接生成;
②编写程序代码生成(实际上也是要写sql);
③使用批量数据生成工具(DataFactory、PL/SQL Developer、TOAD等都可以);
④使用工具录制业务参数化之后长时间运行来生成。
不过使用sql来做是最灵活的,尤其是涉及到业务数据相互转换需要充分考虑到内部处理逻辑及约束时。
我们做软件测试的时候,经常需要页面有点数据,特别是涉及到一些数据统计的测试用例的时候,更是需要源源不断的测试数据让前端页面生成对应的报表测试统计的数据正确性。如果我们通过手工的方式 *** 作业务流程来实现数据的构造的话,少量数据或许还可以,数据一多就会让测试效率直线降低了。
所以作为测试,我们经常需要用一些工具来模拟业务流程,发送一些流量,从而构造出前端页面显示的数据。
那么,可以构造出流量的工具其实很多:
比如接口测试的时候,Jmeter 工具就可以通过 CSV 的方式,读取文件进行数据构造;
比如压力测试的时候,Loadrunner,Jmeter 或者 avalanche 和 Ixia 这些工具,都可以实现不同数量级的数据构造,来实现对产品持续的压力;
比如还可以通过 SQL 脚本来直接在数据库里添加数据,构造海量数据;
......
当然,这些工具和方法,每一个都可以列为一个专业测试领域,比如接口测试、性能测试、大数据测试等;我们今天要讲的方法,是相对来说比较轻量级的一些工具,大家比较容易掌握,也比较容易上手,可以直接通过 Linux 命令发送流量,简单便捷迅速!
我理解的是你希望了解mysql性能测试的方法:其实常用的一般:
选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。
另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。
对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。
2、使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示:
DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )
使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL *** 作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询可以被更有效率的连接(JOIN).. 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:
SELECT * FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )
如果使用连接(JOIN).. 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:
SELECT * FROM customerinfo LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo. CustomerID WHERE salesinfo.CustomerID IS NULL
连接(JOIN).. 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。
3、使用联合(UNION)来代替手动创建的临时表
MySQL 从 4.0 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。
SELECT Name, Phone FROM client UNION SELECT Name, BirthDate FROM author
UNION
SELECT Name, Supplier FROM product
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库 *** 作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的 *** 作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的 *** 作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都 *** 作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL *** 作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。
BEGIN
INSERT INTO salesinfo SET CustomerID=14
UPDATE inventory SET Quantity=11
WHERE item='book'
COMMIT
事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的 *** 作不被其它的用户所干扰。
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户
来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。
其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。
LOCK TABLE inventory WRITE
SELECT Quantity FROM inventory
WHEREItem='book'
...
UPDATE inventory SET Quantity=11
WHEREItem='book'
UNLOCK TABLES
这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的 *** 作。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。例如,外键可以保证每一条销售记录都指向某一个存在的客户。在这里,外键可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一条没有合法CustomerID的记录都不会被更新或插入到salesinfo中。
CREATE TABLE customerinfo
(
CustomerID INT NOT NULL ,
PRIMARY KEY ( CustomerID )
) TYPE = INNODB
CREATE TABLE salesinfo
(
SalesID INT NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY(CustomerID, SalesID),
FOREIGN KEY (CustomerID) REFERENCES customerinfo
(CustomerID) ON DELETECASCADE
) TYPE = INNODB
注意例子中的参数“ON DELETE CASCADE”。该参数保证当 customerinfo 表中的一条客户记录被删除的时候,salesinfo 表中所有与该客户相关的记录也会被自动删除。如果要在 MySQL 中使用外键,一定要记住在创建表的时候将表的类型定义为事务安全表 InnoDB类型。该类型不是 MySQL 表的默认类型。定义的方法是在 CREATE TABLE 语句中加上 TYPE=INNODB。如例中所示。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(), MIN()和ORDERBY这些命令的时候,性能提高更为明显。那该对哪些字段建立索引呢?一般说来,索引应建立在那些将用于JOIN, WHERE判断和ORDER BY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。对于一个ENUM类型的字段来说,出现大量重复值是很有可能的情况,例如customerinfo中的“province”.. 字段,在这样的字段上建立索引将不会有什么帮助;相反,还有可能降低数据库的性能。我们在创建表的时候可以同时创建合适的索引,也可以使用ALTER TABLE或CREATE INDEX在以后创建索引。此外,MySQL
从版本3.23.23开始支持全文索引和搜索。全文索引在MySQL 中是一个FULLTEXT类型索引,但仅能用于MyISAM 类型的表。对于一个大的数据库,将数据装载到一个没有FULLTEXT索引的表中,然后再使用ALTER TABLE或CREATE INDEX创建索引,将是非常快的。但如果将数据装载到一个已经有FULLTEXT索引的表中,执行过程将会非常慢。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。下面是应该注意的几个方面。首先,最好是在相同类型的字段间进行比较的 *** 作。在MySQL 3.23版之前,这甚至是一个必须的条件。例如不能将一个建有索引的INT字段和BIGINT字段进行比较;但是作为特殊的情况,在CHAR类型的字段和VARCHAR类型字段的字段大小相同的时候,可以将它们进行比较。其次,在建有索引的字段上尽量不要使用函数进行 *** 作。
例如,在一个DATE类型的字段上使用YEAE()函数时,将会使索引不能发挥应有的作用。所以,下面的两个查询虽然返回的结果一样,但后者要比前者快得多。
SELECT * FROM order WHERE YEAR(OrderDate)<2001
SELECT * FROM order WHERE OrderDate<"2001-01-01"
同样的情形也会发生在对数值型字段进行计算的时候:
SELECT * FROM inventory WHERE Amount/7<24
SELECT * FROM inventory WHERE Amount<24*7
上面的两个查询也是返回相同的结果,但后面的查询将比前面的一个快很多。第三,在搜索字符型字段时,我们有时会使用 LIKE 关键字和通配符,这种做法虽然简单,但却也是以牺牲系统性能为代价的。例如下面的查询将会比较表中的每一条记录。
SELECT * FROM books
WHERE name like "MySQL%"
但是如果换用下面的查询,返回的结果一样,但速度就要快上很多:
SELECT * FROM books
WHERE name>="MySQL"and name<"MySQM"
最后,应该注意避免在查询中让MySQL进行自动类型转换,因为转换过程也会使索引变得不起作用。
一、远程连接到Windows服务器,使用windows系统自带工具进行收集性能数据
1、Windows服务器中自带的性能监控工具叫做Performance Monitor,在开始-运行中输入‘Perfmon.msc’,然后回车即可运行。通过界面,控制面板\所有控制面板项\管理工具\性能监视器也能打开
打开后,页面展示
2、添加计数器
性能>数据收集器集>用户定义[右击]>新增‘数据收集器集’>手动创建高级>下一步
勾选创建数据日志>性能计数器>【下一步】
点击“添加”→选择计数器
点击选中的可用计数器>【添加】>【确定】
【确定】>【下一步】
选择目录后,点击【完成】
查看新增的计数器,输出地方为日志输出地址
3、选择日志数据源格式
选择用户定义下的数据收集器集>右键属性>性能计数器,日志格式选择“逗号分隔”(即csv格式)
4、开始启动数据采集,选择用户定义下的数据收集器集>右键属性>开始
此时,输出有地址了
5、用EXCEL将数据转换为折线图,并分析性能情况
二、分析性能情况
(1)内存泄露判断
●虚拟内存字节数(VirtualBytes)应该远大于工作集字节数(Workingset),如果两者变化规律相反,比如说工作集增长较快,虚拟内存增长较少,则可能说明出现了内存泄露的情况。
●对于Workingset、Private Bytes、Available bytes这些计数器,如果在测试期间内数值持续增长,而且测试停止后位置在高水平,则也说明存在内存泄露。
●Windows资源监控中,如果Process\PrivateBytes计数器和Process\WorkingSet计数器的值在长时间内持续升高,同时Memory\Available
bytes计数器的值持续降低,则很可能存在内存泄漏。
(2)CPU使用情况
●一般平均不要超过70%,最大不要超过90%(好:70% 、坏:85%、 很差:90%)
(3)tps(每秒处理事务的数量,在SOAPUI中进行统计)
●一般在10-100,不同应用程序具体值不同
1234567891011121314151617
几个常用参数的参考值: CPU:% Processor Time:表示CPU的使用率,如果值大于80表示CPU的处理调度能力偏低。 硬盘:% Disk Time:表示硬盘的I/O *** 作的频率(繁忙时间),如果值大于80表示硬盘I/O调度能力偏低。Average Disk QueueLength:表示硬盘I/O *** 作等待队列的长度,如果值大于2表示硬盘I/O调度能力偏低。 内存 Pages/Sec:表示系统对虚拟内存每秒钟的访问次数,如果值大于20表示有内存方面的问题。(有可能是物理内存偏低,也有可能是虚拟内存没有配置正确。一般情况下虚拟内存应为物理内存的1.5-2倍) Committed Bytes and Available Bytes:Committed Bytes表示虚拟内存的大小,Available Bytes表示剩余可用内存的大小。正常情况下,Available Bytes减少,pages(页面数)应该增加,提供页面交换。<br>如果Available Bytes的值很小表示物理内存偏低。当关闭一些应用以后,Committed Bytes应该减少,Available Bytes应该增加。因为关闭的进程释放了之前占用的内存资源。如果相应的值没有发生变化,那么该进程就可能造成了内存泄漏。 Cache Bytes:表示系统缓存的大小。如果值大于4M表示物理内存偏低。
三、关于计数器的选择
perfmon的计数器主要分四种:处理器性能计数器、内存性能计数器、磁盘性能计数器以及网络性能计数器。
以下为监控服务器常用的计数器:
常用的性能对象与指标
性能对象
计数器
提供的信息
Processor
% Idle Time
% Idle Time 是处理器在采样期间空闲的时间的百分比
Processor
% Processor Time
% Processor Time 指处理器用来执行非闲置线程时间的百分比。计算方法是,测量范例间隔内非闲置线程活动的时间,用范例间隔减去该值。这个计数器是处理器活动的主要说明器,显示在范例间隔时所观察的繁忙时间平均百分比。
Processor
% User Time
% User Time 指处理器处于用户模式的时间百分比。用户模式是为应用程序、环境分系统和整数分系统设计的有限处理模式。
Memory
Available Bytes
Available Bytes显示出当前空闲的物理内存总量。当这个数值变小时,Windows开始频繁地调用磁盘页面文件。如果这个数值很小,例如小于5 MB,系统会将大部分时间消耗在 *** 作页面文件上。
Memory
% Committed Bytes in Use
% Committed Bytes In Use 是 Memory: Committed Bytes 与Memory: Commit Limit之间的比值。(Committed memory指如果需要写入磁盘时已在分页文件中保留空间的处于使用中的物理内存。Commit Limit是由分页文件的大小而决定的。如果扩大了分页文件,该比例就会减小)。这个计数器只显示当前百分比;而不是一个平均值。
Memory
Page Faults/sec
Page Faults/sec是指处理器处理错误页的综合速率。用错误页数/秒来计算。当处理器请求一个不在其工作集(在物理内存中的空间)内的代码或数据时出现的页错误。这个计数器包括硬错误(那些需要磁盘访问的)和软错误(在物理内存的其它地方找到的错误页)。许多处理器可以在有大量软错误的情况下继续 *** 作。但是,硬错误可以导致明显的拖延。这个计数器显示用上两个实例中观察到的值之间的差除以实例间隔的持续时间所得的值。
Network Interface
Bytes Total/sec
Bytes Total/sec是发送和接收字节的速率,包括帧字符在内。
Network Interface
Packets/sec
Packets/sec为发送和接收数据包的速率。
Physical Disk
% Busy Time
% Busy Time指磁盘驱动器忙于为读或写入请求提供服务所用的时间的百分比。
Physical Disk
Avg. Disk Queue Length
Avg. Disk Queue Length 指读取和写入请求(为所选磁盘在实例间隔中列队的)的平均数。
Physical Disk
Current Disk Queue Length
Current Disk Queue Length指在收集 *** 作数据时在磁盘上未完成的请求的数目。它包括在快照内存时正在为其提供服务中的请求。这是一个即时长度而非一定间隔时间的平均值。多主轴磁盘设备可以一次有多个请求 *** 作,但是其它同时发生的请求为等候服务。这个计数器可能会反映一个暂时的高或低的列队长度,但是如果在磁盘驱动器存在持续负载,可能值会总是很高。请求等待时间与这个列队的长度减去磁盘上的主轴成正比。这个差值应小于2才能保持良好的性能。
Logical
Disk
% Free Space
% Free Space 是所选定的逻辑磁盘驱动器上总的可用空闲空间的百分比。
Logical
Disk
Free Megabytes
可用的 MB 显示磁盘驱动器上尚未分配的空间。
以下为监控进程常用的计数器:
Process对象的主要指标
性能对象
计数器
提供的信息
Process
% Privileged Time
% Privileged Time 是在特权模式下处理线程执行代码所花时间的百分比。当调用 Windows 系统服务时,此服务经常在特权模式运行,以便获取对系统专有数据的访问。在用户模式执行的线程无法访问这些数据。对系统的调用可以是直接的(explicit)或间接的(implicit),例如页面错误或间隔。
Process
% Processor Time
% Processor Time 是所有进程线程使用处理器执行指令所花的时间百分比。指令是计算机执行的基础单位。线程是执行指令的对象,进程是程序运行时创建的对象。此计数包括处理某些硬件间隔和陷阱条件所执行的代码。
Process
% User Time
% User Time 指处理线程用于执行使用用户模式的代码的时间的百分比。应用程序、环境分系统和集合分系统是以用户模式执行的。Windows 的可执行程序、内核和设备驱动程序不会被以用户模式执行的代码损坏。
Process
Creating Process ID value
Creating Process ID value 指创建该进程的父进程号。
Process
Elapsed Time
该进程运行的总时间(用秒计算)。
Process
Handle Count
由这个处理现在打开的句柄总数。这个数字等于这个处理中每个线程当前打开的句柄的总数。
Process
ID Process
ID Process 指这个处理的特别的识别符。ID Process 号可重复使用,所以这些 ID Process 号只能在一个处理的寿命期内识别那个处理。
Process
IO Data Bytes/sec
处理从 I/O *** 作读取/写入字节的速度。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Data Operations/sec
本处理进行读取/写入 I/O *** 作的速率。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Other Bytes/sec
处理给不包括数据的 I/O *** 作(如控制 *** 作)字节的速率。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Other Operations/sec
本处理进行非读取/写入 I/O *** 作的速率。例如,控制性能。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Read Bytes/sec
处理从 I/O *** 作读取字节的速度。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Read Operations/sec
本处理进行读取 I/O *** 作的速率。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
IO Write Bytes/sec
处理从 I/O *** 作写入字节的速度。这个计数器为所有由本处理产生的包括文件、网络和设备。
Process
IO Write Operations/sec
本处理进行写入 I/O *** 作的速率。这个计数器为所有由本处理产生的包括文件、网络和设备 I/O 的活动计数。
Process
Page Faults/sec
Page Faults/sec 指在这个进程中执行线程造成的页面错误出现的速度。当线程引用了不在主内存工作集中的虚拟内存页即会出现 Page Fault。如果它在备用表中(即已经在主内存中)或另一个共享页的处理正在使用它,就会引起无法从磁盘中获取页。
Process
Page File Bytes
Page File Bytes 指这个处理在 Paging file 中使用的最大字节数。Paging File 用于存储不包含在其他文件中的由处理使用的内存页。Paging File 由所有处理共享,并且 Paging File 空间不足会防止其他处理分配内存。
Process
Page File Bytes Peak
Page File Bytes Peak 指这个处理在 Paging files 中使用的最大数量的字节。
Process
Pool Nonpaged Bytes
Pool Nonpaged Bytes 指在非分页池中的字节数,非分页池是指系统内存( *** 作系统使用的物理内存)中可供对象(指那些在不处于使用时不可以写入磁盘上而且只要分派过就必须保留在物理内存中的对象)使用的一个区域。这个计数器仅显示上一次观察的值;而不是一个平均值。
Process
Pool Paged Bytes
Pool Paged Bytes 指在分页池中的字节数,分页池是系统内存( *** 作系统使用的物理内存)中可供对象(在不处于使用时可以写入磁盘的)使用的一个区域。这个计数器仅显示上一次观察的值;而不是一个平均值。
Process
Priority Base
这次处理的当前基本优先权。在一个处理中的线程可以根据处理的基本优先权提高或降低自己的基本优先权。
Process
Private Bytes
Private Bytes 指这个处理不能与其他处理共享的、已分配的当前字节数。
Process
Thread Count
在这次处理中正在活动的线程数目。指令是在一台处理器中基本的执行单位,线程是指执行指令的对象。每个运行处理至少有一个线程。
Process
Virtual Bytes
Virtual Bytes 指处理使用的虚拟地址空间的以字节数显示的当前大小。使用虚拟地址空间不一定是指对磁盘或主内存页的相应的使用。虚拟空间是有限的,可能会限制处理加载数据库的能力。
Process
Virtual Bytes Peak
Virtual Bytes Peak 指在任何时间内该处理使用的虚拟地址空间字节的最大数。
Process
Working Set
Working Set 指这个处理的 Working Set 中的当前字节数。Working Set 是在处理中被线程最近触到的那个内存页集。如果计算机上的可用内存处于阈值以上,即使页不在使用中,也会留在一个处理的 Working Set中。当可用内存降到阈值以下,将从 Working Set 中删除页。如果需要页时,它会在离开主内存前软故障返回到 Working Set 中。
Process
Working Set Peak
Working Set Peak 指在任何时间这个在处理的 Working Set 的最大字节数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)