什么是数据库的实例

什么是数据库的实例,第1张

所谓“数据库实例”,实际上就是数据库服务器引擎。每个SQL Server数据库引擎实例各有一套不为其他实例共享的系统及用户数据库。

在一台计算机上,可以安装多个SQL SERVER,每个SQL SERVER就可以理解为是一个实例。

有两种类型的 SQL Server 实例:

1)默认实例:默认实例仅由运行该实例的计算机的名称唯一标识,它没有单独的实例名。如果应用程序在请求连接 SQL Server 时只指定了计算机名,则 SQL Server 客户端组件将尝试连接这台计算机上的数据库引擎默认实例。

2)命名实例:除默认实例外,所有数据库引擎实例都由安装该实例的过程中指定的实例名标识。应用程序必须提供准备连接的计算机的名称和命名实例的实例名。

计算机名和实例名以格式computer_name\instance_name指定。 一台计算机上可以运行多个命名实例。

数据库实例由各种高速缓冲池以及后台进程组成。

数据库是数据以某中方式组织起来的数据集合,物理存储为数据库文件,数据库实例负责维护,访问来这些数据。

打个比方:

你在文本中有一些数据(数据库文件)需要计算,你就要写一个程序(后台进程),计算这些数据,如果计算中有源中间结果,你就需要把数据的中间结果放到内存中的一个区域中(高速缓冲池),然后再取出这些中间结果计算。

当然这只是打个比方,实际数据库实例要处理的东西要多得多。

举个很形象的例子(呵呵):

一个实例就像一台绞肉机,每台绞肉机都可以绞肉。

大块的肉放进去做为输入(T-SQL),碎肉挤出来做为输出(结果集)。

你每运行一次安装程序,只能装一台绞肉机。

当然,你可以在服务器上装好几台绞肉机,但是必须有不同的名字:绞肉机A,绞zhidao肉机B...

故事一、啤酒与尿布

世界零售连锁企业巨头沃尔玛拥有世界上最大的数据仓库系统之一,里面存放了各个门店的详细交易信息。为了能够准确了解顾客的购买习惯,沃尔玛利对顾客的购物行为进行了购物篮分析,想知道顾客经常一起购买的商品有哪些,结果他们有了意外的发现:“跟尿布一起购买最多的商品竟是啤酒!”

这是数据挖掘技术对历史数据进行分析的结果,它符合现实情况吗?是否是一个有用的知识?是否有利用价值?

于是,沃尔玛派出市场调查人员和分析师对这一挖掘结果进行调查分析。经过大量实际调查和分析,揭示了一个隐藏在“尿布与啤酒”背后的美国人的一种行为模式:一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。

既然尿布与啤酒一起被购买的机会很多,于是沃尔玛就将尿布与啤酒并排摆放在一起,结果是尿布与啤酒的销售量双双增长。

按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

故事二、犯罪的根源

格洛斯特郡是英格兰西部的一个郡,大约有五十多万人口。在有一段时间内,发生了多起抢劫案,民众不再感觉到安全,对郡警察局的舆论压力也陡然增加了,强烈要求及时破获这些案件,并避免案件的进一步发生。警方一方面在加快破案的同时,也在努力思考怎么样才可以降低发案率。

按照传统的做法,一般会采取这样的措施:锁定抢劫案的多发地区,加派警力进行巡逻,对行为异常的人员加强盘查等等。然而,格洛斯特郡警察局发现,这些措施的收效甚微,发案率依然居高不下,因为抢劫案的发案地点并不集中,分散在多个不同的街区,这让巡逻警力的安排显得捉襟见肘,难以全面顾及。

此时,来自警察局内部的分析系统却有了新的发现。系统中保存了多年的案件和案犯的卷宗信息,通过利用数据挖掘等分析技术,揭示出最近这段时间的抢劫犯具有一些非常显著的特征:他们大多是没有固定住所,无家可归,而且也没有稳定的工作。另外,在很多抢劫案发生前,这些罪犯都吸食了毒品。正是在毒品的刺激作用下,他们失去了自控能力,临时见财起意,对单身女性或情侣实施抢劫。

新的发现给警察局带来了新的思路,警方当机立断,对原来的增加警力加强巡逻的做法进行了调整,改为采取如下措施:一是加强对无业人员和有吸毒前科人员的管理,并通过社会福利机构对他们实施救助;然后,加强了对毒品交易易发场所的严打和治理,从源头上掐断毒品的供应。

治理得到了良好的效果,抢劫案的发案率迅速降低,格洛斯特郡的人们又重新恢复了平静的生活。

故事三、电邮加新闻

Yahoo是第一家招募了首席数据官的公司,以验证对公司而言,数据的确是一笔真实而有战略意义的财富。目标是通过提供以客户为中心的数据平台和洞察力服务,激励用户积极参与,对营销方案进行创新,从而为消费者和卖家带来价值。Usama Fayyad博士是Yahoo的首席数据官,他在和KDnuggets的Gregory的访谈中介绍了一些Yahoo在数据挖掘方面的成功案例。

“产品整合:一个例子就是你今天在Yahoo电子邮箱上看到的,数据挖掘的可视结果。通过对用户使用行为的意外模式分析,我们发现在每次会话中,人们阅读邮件和阅读新闻的行为之间存在很强的相关关系。我们把这个发现传达给Yahoo电子邮箱产品小组,他们首先想到的就是验证这种关系的影响:在一组测试用户的邮箱首页上显示一个新闻模块,其中的新闻标题被醒目显示。”

“对于象电子邮箱这种产品,最头痛的问题就是如何获取新的‘轻量级用户’,并推动他们的用量,使之变成‘重量级用户’。如果你做到了,那么流失率就会显著下降。实际上,在我们的试验中,最显著的一组流失率下降了40%。于是Yahoo立刻开发并完善了新闻模块,并嵌入Yahoo电子邮箱的首页,到现在,上亿的消费者都可以看到并使用这种产品。我喜欢提及这个故事,因为它很好地说明了我们产品团队的及时反应能力,也证明了在用户使用行为数据中蕴含着很多很多极具价值的潜在模式。”

“即时通信:我们对雅虎通(Instant Messenger)的使用情况进行了分析,以了解激励用量的关键因素是什么。结果发现,最重要的因素是让用户扩大他们的‘好友列表’,至少增加5个新的好友。据此Yahoo精心设计了相应的营销活动,鼓励用户增加好友列表中的好友数,从而显著激励了雅虎通的用量。”

“Yahoo首页的搜索框:一个简单的例子就是我们发现,在Yahoo的首页上,把搜索框放在居中的位置(而不是以前的左侧)将提高用户的用量。这样一方面可以促进用户的积极使用,对Yahoo来说也没有成本支出。这个结果的发现过程也很有趣,我们首先发现Netscape浏览器的用户比IE的用户更多地使用了搜索功能,进一步探查发现两个浏览器在视觉上的唯一区别就是:二者中的搜索框位置不同!搜索框在Netscape浏览器中是居中放置,而在IE中则是靠近左侧。很不明显的差别,但却很重要。一般谁会想到呢?”


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6460556.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-22
下一篇 2023-03-22

发表评论

登录后才能评论

评论列表(0条)

保存