大数据量高并发访问数据库结构的设计

大数据量高并发访问数据库结构的设计,第1张

数据量高并发访问数据库结构的设计

如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能。所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的。

在一个系统分析、设计阶段,因为数据量较小,负荷较低。我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程。

所以在考虑整个系统的流程的时候,我们必须要考虑,在高并发大数据量的访问情况下,我们的系统会不会出现极端的情况。(例如:对外统计系统在7月16日出现的数据异常的情况,并发大数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。具体情况是:在日期临界时(00:00:00),判断数据库中是否有当前日期的记录,没有则插入一条当前日期的记录。在低并发访问的情况下,不会发生问题,但是当日期临界时的访问量相当大的时候,在做这一判断的时候,会出现多次条件成立,则数据库里会被插入多条当前日期的记录,从而造成数据错误。),数据库的模型确定下来之后,我们有必要做一个系统内数据流向图,分析可能出现的瓶颈。

为了保证数据库的一致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。(例如用户表的地区,我们可以把地区另外存放到一个地区表中)如果数据冗余低,数据的完整性容易得到保证,提高了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。而对于多表之间的关联查询(尤其是大数据表)时,其性能将会降低,同时也提高了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量大小、数据项的访问频度,对此类数据表频繁的关联查询应适当提高数据冗余设计但增加了表间连接查询的 *** 作,也使得程序的变得复杂,为了提高系统的响应时间,合理的数据冗余也是必要的。设计人员在设计阶段应根据系统 *** 作的类型、频度加以均衡考虑。

另外,最好不要用自增属性字段作为主键与子表关联。不便于系统的迁移和数据恢复。对外统计系统映射关系丢失(******************)。

原来的表格必须可以通过由它分离出去的表格重新构建。使用这个规定的好处是,你可以确保不会在分离的表格中引入多余的列,所有你创建的表格结构都与它们的实际需要一样大。应用这条规定是一个好习惯,不过除非你要处理一个非常大型的数据,否则你将不需要用到它。(例如一个通行证系统,我可以将USERID,USERNAME,USERPASSWORD,单独出来作个表,再把USERID作为其他表的外键)

表的设计具体注意的问题:

1、数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率。

2、能够用数字类型的字段尽量选择数字类型而不用字符串类型的(电话号码),这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

3、对于不可变字符类型char和可变字符类型varchar都是8000字节,char查询快,但是耗存储空间,varchar查询相对慢一些但是节省存储空间。在设计字段的时候可以灵活选择,例如用户名、密码等长度变化不大的字段可以选择CHAR,对于评论等长度变化大的字段可以选择VARCHAR。

4、字段的长度在最大限度的满足可能的需要的前提下,应该尽可能的设得短一些,这样可以提高查询的效率,而且在建立索引的时候也可以减少资源的消耗。

5、基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。

6、若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。这里的第三个实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处理多对多的关系。

7、主键PK的取值方法,PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引占用空间大,而且速度也慢。

8、主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重复出现, 才是数据冗余!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。

〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,而且是一种高级冗余。冗余的目的是为了提高处理速度。只有低级冗余才会增加数据的不一致性,因为同一数据,可能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。

9、中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员自己用程序自动维护。

10、防止数据库设计打补丁的方法是“三少原则”

(1) 一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计;

(2) 一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间;

(3) 一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简单,有的人就是不习惯、不采纳、不执行。

数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点,不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性)的E--R图,要好得多。

提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。集成的程度越高,数据共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数就会越少。

提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。

“三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”设计数据库的理论依据。

11、在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:

(1) 在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。

(2) 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方式用编程语言计算处理完成之后,最后才入库追加到表中去。

(3) 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则垂直分割该表,将原来的一个表分解为两个表。

(4) 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。

(5) 在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。

总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三个层次上同时下功夫。

主键设计:

1、不建议用多个字段做主键,单个表还可以,但是关联关系就会有问题,主键自增是高性能的。

2、一般情况下,如果有两个外键,不建议采用两个外键作为联合住建,另建一个字段作为主键。除非这条记录没有逻辑删除标志,且该表永远只有一条此联合主键的记录。

3、一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键(因为它无子孙), 但必须要有外键(因为它有父亲)。

主键与外键的设计,在全局数据库的设计中,占有重要地位。当全局数据库的设计完成以后,有个美国数据库设计专家说:“键,到处都是键,除了键之外,什么也没有”,这就是他的数据库设计经验之谈,也反映了他对信息系统核心(数据模型)的高度抽象思想。因为:主键是实体的高度抽象,主键与、外键的配对,表示实体之间的连接。

想要知道如何处理数据并发,自然需要先了解数据并发。

什么是数据并发 *** 作呢?

就是同一时间内,不同的线程同时对一条数据进行读写 *** 作。

在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行 *** 作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。

针对这种情况,我们如何有效的处理数据并发呢?

第一种方案、数据库锁

从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。

这四种隔离级别分别是:

读未提交(Read Uncommitted)

读提交(Read Committed)

可重复读(Repeated Read)

串行化(Serializable)

当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?

脏读(dirty read)

当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去 *** 作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的 *** 作就会失去目标。

不可重复读(unrepeatable read)

一个事务中,两次读 *** 作出来的同一条数据值不同,就是不可重复读。

例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B *** 作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。

幻读(phantom problem)

一个事务中,两次读 *** 作出来的结果集不同,就是幻读。

例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。

那针对这些结果,不同的隔离级别可以干什么呢?

“读未提(Read Uncommitted)”能预防啥?啥都预防不了。

“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。

“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。

“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。

好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。

因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。

最有效的一种方式就是:缓存

想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。

还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写 *** 作也变少了,执行效率也就大大提高了。

当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。

当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。

那么,读写分离就是另一种有效的方式了

当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。

我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写 *** 作的性能。

数据库建立多表关联,关键业务数据字段和查询字段建立索引,对唯一性建立好,同时多任务并发时程序设计时注意数据的合理性检验和用户处理数据有问题时的友好提示见面,建立好的结构文档说明,同时对关键字段的关系型作好记录,有效地设计多表的结构安排,尽量减少数据的冗余,同时又要避免对历史数据的影响,保持良好的数据管理


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6617850.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-25
下一篇 2023-03-25

发表评论

登录后才能评论

评论列表(0条)

保存