数据仓库和数据库的主要区别:
数据仓库是指从业务数据中创建信息数据库,并针对决策和分析进行优化。数据库是数据管理的有效技术,是由一批数据构成的有序集合,这些数据被存放在结构化的数据表里。数据表之间相互关联,反映客观事物间的本质联系。数据库能有效地帮助一个组织或企业科学地管理各类信息资源。
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。数据库是为捕获数据而设计,数据仓库是为分析数据而设计。
数据仓库和数据库两者之间的关系
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
数据库与数据仓库的本质差别如下:1、逻辑层面/概念层面:数据库和数据仓库其实是一样的或者及其相似的,都是通过某个数据库软件,基于某种数据模型来组织、管理数据。但是,数据库通常更关注业务交易处理(OLTP),而数据仓库更关注数据分析层面(OLAP),由此产生的数据库模型上也会有很大的差异。
2、数据库通常追求交易的速度,交易完整性,数据的一致性等,在数据库模型上主要遵从范式模型(1NF,2NF,3NF等),从而尽可能减少数据冗余,保证引用完整性;而数据仓库强调数据分析的效率,复杂查询的速度,数据之间的相关性分析,所以在数据库模型上,数据仓库喜欢使用多维模型,从而提高数据分析的效率。
3、产品实现层面:数据库和数据仓库软件是有些不同的,数据库通常使用行式存储,如SAP
ASE,Oracle,
Microsoft
SQL
Server,而数据仓库倾向使用列式存储,如SAP
IQ,SAP
HANA。
数据仓库:为企业所有级别的决策制定过程,提供所有类型数据支持的战略(数据)集合。
大数据:所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
传统数据库:一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
其实从三个定义,我们好像区别不大。
数据库指的是数据的集合,数据仓库也是一个数据集合,大数据也是一个处理和存储数据的地方。
但是不同的是,在于应用场景,和构建的技术原理不一样。
传统数据库是存储根据范式建模的关系型数据,主要用于OLTP(on-line transaction processing)翻译为联机事务处理的软件。大数据是根据map redurce范式构建的出局处理,存储的软件,主要用于OLAP是做分析处理。大数据和传统数据库,还有一个更大的区别在于,处理的数据量以及计算量的大小,当传统数据库,无法在人可以接受的短时间内计算出结果,那这个数据就叫大数据,需要使用到大数据技术处理。而数据仓库本质上是一种数据的处理方式,而不是一种基础软件,它可以依赖于传统数据库,也可以依赖大数据技术去构建。
可以参考这篇文章:数据仓库(2)数据仓库、大数据与传统数据库的区别 - 知乎 (zhihu.com)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)