什么是数据并发 *** 作呢?
就是同一时间内,不同的线程同时对一条数据进行读写 *** 作。
在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行 *** 作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。
针对这种情况,我们如何有效的处理数据并发呢?
第一种方案、数据库锁
从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。
这四种隔离级别分别是:
读未提交(Read Uncommitted)
读提交(Read Committed)
可重复读(Repeated Read)
串行化(Serializable)
当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?
脏读(dirty read)
当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去 *** 作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的 *** 作就会失去目标。
不可重复读(unrepeatable read)
一个事务中,两次读 *** 作出来的同一条数据值不同,就是不可重复读。
例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B *** 作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。
幻读(phantom problem)
一个事务中,两次读 *** 作出来的结果集不同,就是幻读。
例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。
那针对这些结果,不同的隔离级别可以干什么呢?
“读未提(Read Uncommitted)”能预防啥?啥都预防不了。
“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。
“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。
“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。
好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。
因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。
最有效的一种方式就是:缓存
想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。
还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写 *** 作也变少了,执行效率也就大大提高了。
当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。
当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。
那么,读写分离就是另一种有效的方式了
当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。
我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写 *** 作的性能。
主要通过架构设计来减少高并发对数据库的压力;比如 在数据库和应用程序之间,增加 DAL层,通过代理,连接池等,保证数据库与业务程序由一定的缓冲和关系梳理;
在数据库前面,加一个缓存层,让大部分数据访问,都直接在缓存层获取数据,不用访问到后端的MySQL数据库;
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)