根据医学和心理学等学科的研究表明:人可以感知步态,并可以通过步态进行人的身份认证。尤其自“911事件”以来,使得远距离的身份识别研究备受关注。而与其他生物特征识别相比,步态识别的突出特点主要是能远距离识别。因此,步态识别的研究,己越来越引起国内外学者的关注。目前,己研究出的步态识别的软件算法有如下几种:
对于每个步态序列而言,一种改进的背景减除技术被使用来提取人的空间轮廓。这些轮廓的边缘,被逆时针方向展开为一系列相对于质心的距离模板。这些模板特征通过使用主元统计分析方法来训练,从而得出步态形状的变化模式在特征空间中的轨迹表达。识别时,采用了时空相关匹配方法和基于归一化欧氏距离的最近邻规则,并引入了相应于个人的体形等生理特征的融合,以用于必要的步态分类校验。
该算法来源于“从行走运动的时空模式中可学习人体的外观模型”的观点。对于每个序列而言,背景减除过程用来提取行人的运动轮廓,这些轮廓随时间的姿态变化在二维空间中被对应描述为一个序列的复数配置(Complex Configuration)。利用Procrustes形状分析方法,从该序列配置中获取主轮廓模型作为人体的静态外观特征。实验结果表明,该算法获得了令人鼓舞的识别性能。
该算法来源于“人体行走运动很大程度上依赖于轮廓随着时间的形状变化”的直观想法。对于每个序列而言,背景减除与轮廓相关方法用于检测和跟踪行人的运动轮廓,这些时变的二维轮廓形状被转换为对应的一维距离信号,同时通过特征空间变换来提取低维步态特征。基于时空相关或归一化欧氏距离度量,以及标准的模式分类技术用于最终的识别。实验结果表明,该算法不仅获得了令人满意的识别性能,而且拥有相对较低的计算代价。
该算法来源于“行走运动的关节角度变化包含着丰富的个体识别信息”的思想。首先,结合人体模型、运动模型和运动约束等先验知识,利用Condensation算法进行行人的跟踪。然后,从跟踪结果中获取人体主要关节的角度变化轨迹。这些轨迹经过结构和时间归一化后,作为动态特征而用于身份识别。
这是一种基于新的特征提取方法的自动步态识别算法,该算法仅从腿部的运动进行身份识别。对于每个序列,用一种基于图像色度偏差的背景减除算法来检测运动对象。在经过后处理的二值图像序列中,利用边界跟踪算法获取对象边界,在对象边界图像上,局部应用Hough变换检测大腿和小腿的直线,从而得到大腿和小腿的倾斜角。用最小二乘法将一个周期内的倾斜角序列,拟合成5阶多项式,把Fourier级数展开后得到的相位与振幅的乘积,定义为低维步态特征向量。在小样本的数据库上用Fisher线性分类器验证所研究算法的性能,正确分类率为79.17%,在步态数据库不很理想的情况下也获得了较好的识别率。
基于广义多尺度分析理论,针对不同的应用图像或信号库,得到最优小波分解, 并在人体步态识别中与二维小波矩结合进行应用。在三维物体的表示方面, 作为三维物体的一种无冗余的描述和识别方法,提出了三维小波矩理论。与现存的方法相比,它不但具有平移、缩放和旋转不变性,在径向上还增加了多尺度分析的特性。可以根据不同的需要,提供多层次的特征描述子,同时引进球面调和函数加速算法和小波的Mallat算法后,使小波矩的计算得到了双重加速。有人计划搭建实用的三维物体检索平台,将进一步完善该算法。
此外,有人在基于人体生物特征不仅包含静态外观信息,也包含行走运动的动态信息的思想,提出了一种判决级上融合人体静态和动态特征的身份识别方法。利用此方法在不同融合规则下的实验结果表明,融合后的识别性能均优于使用任何单一模态下的识别性能。
步态识别是一个相当新的发展方向,它旨在从相同的行走行为中寻找和提取个体之间的变化特征,以实现自动的身份识别。安全视频智能监控场合中自动步态识别系统的基本工作原理框图的一般框架如图1所示,它是融合计算机视觉、模式识别与视频/图像序列处理的一门技术。
首先由监控摄像机采集人的步态,通过检测与跟踪获得步态的视频序列,经过预处理分析提取该人的步态特征。即对图像序列中的步态运动进行运动检测、运动分割、特征提取等步态识别前期的关键处理。其次,再经过进一步处理,使其成为与己存贮在数据库的步态的同样的模式;最后,将新采集的步态特征与步态数据库的步态特征进行比对识别,有匹配的即进行预/报警。无匹配的,监控摄像机则继续进行步态的采集。
因此,一个智能视频监控的自动步态识别系统,实际上主要由监控摄像机、一台计算机与一套好的步态视频序列的处理与识别的软件所组成。其中,最关键的是步态识别的软件算法。所以,对智能视频监控系统的自动步态识别的研究,也主要是对步态识别的软件算法的研究。
人工智能一共分为天然语言处理、计算机视觉、语音识别、专家系统以及交叉领域等五个领域。今天我就经过人工智能的六个方向讲一讲人工智能在生活中的有趣应用,来帮助你们更好地理解人工智能,尽享科技带给咱们的便捷生活。数据库
【第一方面:天然语言处理】
天然语言处理是一门融语言学、计算机科学、数学于一体的科学。天然语言处理并非通常地研究天然语言,而在于研制能有效地实现天然语言通讯的计算机系统,特别是其中的软件系统,是计算机科学,人工智能,语言学关注计算机和人类(天然)语言之间的相互做用的领域。天然语言处理的目的是实现人与计算机之间用天然语言进行有效通讯的各类理论和方法。安全
一、多语言翻译。机器学习
天然语言处理的一个主要应用方面就是外文翻译。生活中遇到外文文章,你们想到的第一件就是寻找翻译网页或者APP,然而每次机器翻译出来的结果,基本上都是不符合语言逻辑的,须要咱们再次对句子进项二次加工排列组合。至于专业领域的翻译,如法律、医疗领域,机器翻译根本就是不可行的。学习
面对这一困境,天然语言处理正在努力打通翻译的壁垒,只要提供海量的数据,机器就能本身学习任何语言。机器从0开始进入一个领域(零成本进入)大概2周时间。因此,进入哪一个领域都能高度垂直的作下去。好比,法律类专业文章翻译,优质法律文章的总量是有限的,让机器学习一遍这些文章,就能够保证翻译95%的流畅度,并且能作到实时同步。测试
二、虚拟我的助理。大数据
虚拟我的助理是指使用者经过声控、文字输入的方式,来完成一些平常生活的小事。大部分的虚拟我的助理均可以作到搜集简单的生活信息,并在观看有关评论的同时,帮你优化信息,智能决策。优化
同时部分虚拟我的助理还能够直接播放音乐的智能音响或者收取电子邮件,这些都是虚拟我的助理的变化形式之一。虚拟我的助理应用在咱们生活中的方方面面,音响、车载、智能家居、智能车载,智能客服多个方面。通常来讲,听到语音指令就能够完成服务的,基本上都是虚拟我的助理。云计算
三、智能病例处理人工智能
天然语言处理还能够将积压的病例自动批量转化为结构化数据库,机器学习和天然语言处理技术能自动抓取病历中的临床变量,生成标准化的数据库。随后变量抽提、思路生成到论文图表导出的全过程辅助智能算法能挖掘变量相关性,激发论文思路,同 时提供针对临床科研的专业统计分析支持。
其水平至关于受过8 年临床医学教育的医学研究生,这样下来一样同读一篇50页的病历,抓取和理解其中的全部临床信息速度比医平生均快2700倍,大大地提升了医院的办公效率,求医难这个问题将获得不少的缓解。
【第二方面:语音识别】
语音识别是一门交叉学科。 语音识别技术所涉及的领域包括:信号处理、模式识别、几率论和信息论、发声机理和听觉机理、人工智能等等。与机器进行语音交流,让机器明白你说什么,这是人们长期以来求之不得的事情,现在人工智能将这一理想变为现实,并带它走入了咱们平常的生活。
一、智能医院。
依靠人工智能技术和大数据,医院能够实现智能语音交互的知识问答和病历查询,语音录入能取代打字,让您经过说话的方式,就可轻松与电脑、平板电脑、移动查房设备进行录入。每个人说的话说话都会被转录成文字并显示在您的HIS系统、PACS系统、CIS系统等但愿输入文字的位置。此外还能够对健康风险进行预测和对患者分群进行分析。
二、口语评测。
在语音识别方面还有一个比较有趣的应用——语音评测服务,语音评测服务是利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用。在语音测评服务中,人机交互式教学,能实现一对一口语辅导,就好像是请了一个外教在家,今后解决了哑吧英语的问题。
【第三个方面:计算机视觉】
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步作图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。经过计算机视觉,电脑将处理更适合人眼观察或传送给仪器检测的图像。计算机视觉的主要任务是经过对采集的图片或者视频进行处理以得到相应场景的三维信息。
一、智能安防。
随着各级政府大力推动“平安城市”建设的过程当中,监控点位愈来愈多,视频和卡口产生了海量的数据。尤为是高清监控的普及,整个安防监控领域的数据量都在爆炸式增加,依靠人工来分析和处理这些信息变得愈来愈困难,利用以计算机视觉为核心的安防技术领域具备海量的数据源以及丰富的数据层次,同时安防业务的本质诉求与AI的技术逻辑高度一致,从能够从事前的预防应用到过后的追查。
二、人脸识别打拐。
当前,全国拐卖儿童犯罪活动较为猖獗,受害人及受害家庭数以万计。据民政部估计,目前,全国流浪乞讨儿童数量在100 万-150 万左右。在河南、云南以及两广沿海等地乡村地区,买卖儿童几近市场化,造成了一个完整的地下黑色利益链。能够寻回被拐卖儿童这件事迫在眉睫,刻不容缓。目前计算机视觉所应用的“人像识别、人脸对比”最快可让被拐儿童在7小时内被寻回,这是计算机视觉在安全领域的巨大应用,从此也将愈来愈多地应用在打击犯罪等方面。
【第四个方面:专家系统】
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它是指内部含有大量的某个领域专家水平的知识与经验,利用人类专家的知识和解决问题的方法来处理该领域问题的智能计算机程序系统。一般是根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,去解决那些须要人类专家处理的复杂问题。
一、无人汽车。
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。从20世纪70年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,在可行性和实用化方面都取得了突破性的进展。
中国从20世纪80年代开始进行无人驾驶汽车的研究,国防科技大学在1992年成功研制出中国第一辆真正意义上的无人驾驶汽车。2005年,首辆城市无人驾驶汽车在上海交通大学研制成功。世界上最早进的无人驾驶汽车已经测试行驶近五十万千米,其中最后八万千米是在没有任何人为安全干预措施下完成的。
二、天气预测
随着手机的普及,如今愈来愈多的人已经习惯观看手机中的天气预测,而在天气预测中,专家系统的地位也是决定性的。专家系统能够首先经过手机的GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。
用户就能够随时随地地查询本身所在地的天气走势。天气预测中再无“局部地区有雨”的字眼,取而代之的是“您所在街道25分钟后小雨,50分钟后雨停”。给您配上一位专属的天气预报员,让您收到的天气预报能精准到分钟和所在街道。
三、城市系统
城市系统是将交通、能源、供水等基础设施所有数据化,将散落在城市各个角落的数据进行汇聚,再经过超强地分析、超大规模地计算,实现对整个城市的全局实时分析,让城市智能地运行起来。城市系统率先解决的问题就是堵车。今年杭州的城市大脑,经过对地图数据、摄像头数据进行智能分析,从而智能地调节红绿灯,成功将车辆通行速度最高提高了11%,大大改善了出行体验。
【第五个方面:各领域交叉使用】
其实人工智能的四大方面应用其实或多或少都涉及到了其余领域,然而交叉应用最突出的方面仍是智能机器人。机器人是自动执行工做的机器装置。它既能够接受人类指挥,又能够运行预先编排的程序,也能够根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工做的工做,例如生产业、建筑业,或是危险的工做。
一、物流机器人
物流机器人是结合机器人产品和人工智能技术去实现高度柔性和智能的物流自动化的技术变革的引领者。在消费升级下的市场压力,海量SKU的库存管理、难以控制的人力成本,都已经成为电商、零售等行业的共同困扰。而物流机器人管理成本低,包裹完整性强,能够知足各类分拣效率和准确率的要求,投资回报周期短。它的出现可有效提高生产柔性,助力企业实现智能化转型,也将愈来愈多地应用在平常生活中。
二、萌宠机器人
孩子一直是家长的心肝肉,而如何让孩子赢在起跑线也是各路家长无比关心的问题,这时候早教就显得尤其重要了。早教其实就是让孩子有效的玩耍,让孩子在玩耍的过程当中学到不少知识,开发孩子的脑力,动手能力,反应能力,审美能力,培养兴趣及习惯。
市面上的早教机构价格昂贵,师资力量不足,同时还可能存在必定的安全隐患,这时候萌宠机器人的存在就很大的缓解了这一问题。语音功能让它就像孩子的小伙伴同样和孩子交流,记忆功能还能够记住宝宝的使用习惯,很快找到宝宝想听的内容。同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容能够持续更新。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)