为什么要使用集群架构?

为什么要使用集群架构?,第1张

分布式集群其实就好像权限或者表的水平切割和垂直切割,集群是一种水平切割来分担压力的形式,分布式就好像一个垂直切割来分担压力一样。分布式必定包含集群。

一、为什么要集群?

1.JavaEE项目,如果部署在一台Tomcat上,所有的请求,都由这一台服务器处理,存在很大风险:

A:并发处理能力有限

(一般单台服务器处理的并发量为250左右,超过250,可能会出现数据丢失,链接不稳定的情况)。因为单服务器的性能有限制。所以单台Tomcat的最大连接数有限制,

B:容错率低,一旦服务器故障,整个服务就无法访问了。

eBay于 1999年6月停机22小时的事故,中断了约230万的拍卖,使eBay的股票下降了9.2个百分点。

C:单台服务器计算能力低,无法完成复杂的海量数据计算。

提高CPU主频和总线带宽是最初提供计算机性能的主要手段。但是这一手段对系统性能的提供是有限的。接着人们通过增加CPU个数和内存容量来提高性能,于是出现了向量机,对称多处理机(SMP)等。但是当CPU的个数超过某一阈值,这些多处理机系统的可扩展性就变的极差。主要瓶颈在于CPU访问内存的带宽并不能随着CPU个数的增加而有效增长。与SMP相反,集群系统的性能随着CPU个数的增加几乎是线性变化的。

使用集群架构完成工作主要有以下几点决定:

1、高性能计算

一些国家重要的计算密集型应用(如天气预报,核试验模拟等),需要计算机有很强的运算处理能力⌄以全世界现有的技术,即使是大型机器,其计算能力也是有限的,很难单独完成此任务。因为计算时间可能会相当长,也许几天,甚至几年或更久。因此,对于这类复杂的计算业务,便使用了计算机集群技术,集中几十上百台,甚至成千上万台计算机进行计算。

2、价格有效性

早期的淘宝,支付宝的数据库等核心系统就是使用上百万元的小型机服务器。后因使用维护成本太高以及扩展设备费用成几何级数翻倍,甚至成为扩展瓶颈,人员维护也十分困难,最终使用PC服务器集群替换之,比如,把数据库系统从小机结合Oracle数据库迁移到MySQL开源数据库结合PC服务器上来。不但成本下降了,扩展和维护也更容易了。

3、可伸缩性

当服务负载,压力增长时,针对集群系统进行较简单的扩展即可满足需求,且不会降低服务质量。

通常情况下,硬件设备若想扩展性能,不得不增加新的CPU和存储器设备,如果加不上去了,就不得不购买更高性能的服务器,就拿我们现在的服务器来讲,可以增加的设备总是有限的。如果采用集群技术,则只需要将新的单个服务器加入现有集群架构中即可,从访问的客户角度来看,系统服务无论是连续性还是性能上都几乎没有变化,系统在不知不觉中完成了升级,加大了访问能力,轻松地实现了扩展。集群系统中的节点数目可以增长到几千乃至上万个,其伸缩性远超过单台超级计算机。

4、高可用性

单一的计算机系统总会面临设备损毁的问题,如CPU,内存,主板,电源,硬盘等,只要一个部件坏掉,这个计算机系统就可能会宕机,无法正常提供服务。在集群系统中,尽管部分硬件和软件还是会发生故障,但整个系统的服务可以是7*24小时可用的。

集群架构技术可以使得系统在若干硬件设备故障发生时仍可以继续工作,这样就将系统的停机时间减少到了最小。集群系统在提高系统可靠性的同时,也大大减小了系统故障带来的业务损失,目前几乎100%的互联网网站都要求7*24小时提供服务。

5、透明性

多个独立计算机组成的松耦合集群系统构成一个虚拟服务器。用户或客户端程序访问集群系统时,就像访问一台高性能,高可用的服务器一样,集群中一部分服务器的上线,下线不会中断整个系统服务,这对用户也是透明的。

6、可管理性

整个系统可能在物理上很大,但其实容易管理,就像管理一个单一映像系统一样。在理想状况下,软硬件模块的插入能做到即插即用。

7、可编程性

在集群系统上,容易开发及修改各类应用程序。

蓝海大脑水冷工作站超融合架构承担着计算资源池和分布式存储资源池的作用,极大地简化了数据中心的基础架构,通过软件定义的计算资源虚拟化和分布式存储架构实现无单点故障、无单点瓶颈、d性扩展、性能线性增长等能力。通过简单方便的统一管理界面,实现对数据中心计算、存储、网络、虚拟化等资源的统一监控、管理和运维。

型号 蓝海大脑水冷服务器

英特尔

处理器 Intel Xeon Gold 6240R 24C/48T,2.4GHz,35.75MB,DDR4 2933,Turbo,HT,165W.1TB

Intel Xeon Gold 6258R 28C/56T,2.7GHz,38.55MB,DDR4 2933,Turbo,HT,205W.1TB

Intel Xeon W-3265 24C/48T 2.7GHz 33MB 205W DDR4 2933 1TB

Intel Xeon Platinum 8280 28C/56T 2.7GHz 38.5MB,DDR4 2933,Turbo,HT 205W 1TB

Intel Xeon Platinum 9242 48C/96T 3.8GHz 71.5MB L2,DDR4 3200,HT 350W 1TB

Intel Xeon Platinum 9282 56C/112T 3.8GHz 71.5MB L2,DDR4 3200,HT 400W 1TB

AMD

处理器 AMD锐龙Threadripper Pro 3945WX 4.0GHz/12核/64M/3200/280W

AMD锐龙Threadripper Pro 3955WX 3.9GHz/16核/64M/3200/280W

AMD锐龙Threadripper Pro 3975WX 3.5GHz/32核/128M/3200/280W

AMD锐龙Threadripper Pro 3995WX 2.7GHz/64核/256M/3200/280W

AMD锐龙Threadripper Pro 5945WX 4.1G 12核/64M/3200/280W

AMD锐龙Threadripper Pro 5955WX 4.0G 16核/64M/3200/280W

AMD锐龙Threadripper Pro 5965WX 3.8G 24核/128M/3200/280W

AMD锐龙Threadripper Pro 5975WX 3.6G 32核/128M/3200/280W

AMD锐龙Threadripper Pro 5995WX 2.7G 64核/256M/3200/280W

显卡 NVIDIA A100×4, NVIDIA GV100×4

NVIDIA RTX 3090×4, NVIDIA RTX 3090TI×4,

NVIDIA RTX 8000×4, NVIDIA RTX A6000×4,

NVIDIA Quadro P2000×4,NVIDIA Quadro P2200×4

硬盘 NVMe.2 SSD: 512GB,1TB; M.2 PCIe - Solid State Drive (SSD),

SATA SSD: 1024TB, 2048TB, 5120TB

SAS:10000rpm&15000rpm,600GB,1.2TGB,1.8TB

HDD : 1TB,2TB,4TB,6TB,10TB

外形规格 立式机箱

210尺寸mm(高*深*宽) : 726 x 616 x 266

210A尺寸mm(高*深*宽) : 666 x 626 x 290

210B尺寸mm(高*深*宽) : 697 x 692 x 306

声卡:7.1通道田声卡

机柜安装 : 前置机柜面板或倒轨(可选)

电源 功率 : 1300W×22000W×1

软件环境 可预装 CUDA、Driver、Cudnn、NCCL、TensorRT、Python、Opencv 等底层加速库、选装 Tensorflow、Caffe、Pytorch、MXnet 等深度学习框架。

前置接口 USB3.2 GEN2 Type-C×4

指承灯电和硬盘LED

灵动扩展区 : 29合1读卡器,eSATA,1394,PCIe接口(可选)

读卡器 : 9合1SD读卡器(可选)

模拟音频 : 立体声、麦克风

后置接口 PS2接口 : 可选

串行接口 : 可选

USB3.2 GEN2 Type-C×2

网络接口 : 双万兆 (RJ45)

IEEE 1394 : 扩展卡口

模拟音频 : 集成声卡 3口

连接线 专用屏蔽电缆(信号电缆和电源电缆)

资料袋 使用手册、光盘1张、机械键盘、鼠标、装箱单、产品合格证等

(1)另外一位博主的观点(http://blog.csdn.net/bluishglc/article/details/5483162)

博主有对他的表述有作一点修改补充,方便各位猿友明了他的意思。

简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。

例如:

如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行改任务需10小时。

采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)

而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,10小后,10个任务同时完成,这样,整身来看,还是平均1小时完成一个任务!(注意这里的任务和子任务的区别)

(2)知乎(https://www.zhihu.com/question/20004877)

这个猿友描述得很简单明了:

分布式:一个业务分拆多个子业务,部署在不同的服务器上

集群:同一个业务,部署在多个服务器上

另外一位猿友从另外一个角度去表述:

集群是个物理形态,分布式是个工作方式。

这位猿友的描述也很简洁,但是比较抽象:

按照我的理解,集群是解决高可用的,而分布式是解决高性能、高并发的

(3)百度百科(http://baike.baidu.com/view/4804677.htm、http://baike.baidu.com/view/3022776.htm)

集群:

集群是一组相互独立的、通过高速网络互联的计算机,它们构成了一个组,并以单一系统的模式加以管理。一个客户与集群相互作用时,集群像是一个独立的服务器。集群配置是用于提高可用性和可缩放性。

分布式:

一种基于网络的计算机处理技术,与集中式相对应。由于个人计算机的性能得到极大的提高及其使用的普及,使处理能力分布到网络上的所有计算机成为可能。分布式计算是和集中式计算相对立的概念,分布式计算的数据可以分布在很大区域。

看完这些是不是有种似懂非懂的感觉?博主也是一样!所以我们接下来继续了解。

上面博主有说过自己有接触过分布式服务框架Dubbo,那么我们看看它为什么说自己是分布式服务架构?(http://dubbo.io/User+Guide-zh.htm#UserGuide-zh-%E8%83%8C%E6%99%AF)

分布式服务架构

当垂直应用越来越多,应用之间交互不可避免,将核心业务抽取出来,作为独立的服务,逐渐形成稳定的服务中心,使前端应用能更快速的响应多变的市场需求。

此时,用于提高业务复用及整合的 分布式服务框架(RPC) 是关键。

偶然之间,有发现据说“Git就是分布式版本控制系统”,为什么它是分布式的呢?

Git就是分布式版本控制系统,对应的是集中式的版本控制如SVN。简单的说,分布式的版本控制就是每个人都可以创建一个独立的代码仓库用于管理,各种版本控制的 *** 作都可以在本地完成。每个人修改的代码都可以推送合并到另外一个代码仓库中。而像SVN这样,只有一个中央控制,所有的开发人员都必须依赖于这个代码仓库。每次版本控制的 *** 作也必须链接到服务器才能完成。很多公司喜欢用集中式的版本控制是为了更好的控制代码。如果个人开发,就可以选择Git这种分布式的。

从一般开发者的角度来看,git有以下功能:

1、从服务器上克隆完整的Git仓库(包括代码和版本信息)到单机上。

2、在自己的机器上根据不同的开发目的,创建分支,修改代码。

3、在单机上自己创建的分支上提交代码。

4、在单机上合并分支。

5、把服务器上最新版的代码fetch下来,然后跟自己的主分支合并。

6、生成补丁(patch),把补丁发送给主开发者。

7、看主开发者的反馈,如果主开发者发现两个一般开发者之间有冲突(他们之间可以合作解决的冲突),就会要求他们先解决冲突,然后再由其中一个人提交。如果主开发者可以自己解决,或者没有冲突,就通过。

8、一般开发者之间解决冲突的方法,开发者之间可以使用pull 命令解决冲突,解决完冲突之后再向主开发者提交补丁。

看了分布式服务框架Dubbo和分布式版本控制系统Git的这些描述后,细想一下,似乎和上面的“分布式:一个业务分拆多个子业务,部署在不同的服务器上,集群:同一个业务,部署在多个服务器上”的观点些相似。

Dubbo将核心业务抽取出来,作为独立的服务模块,各个模块之间只需要依赖接口,接口实现分离,那么开发人员可以各自完成自己负责的服务模块,最后完成一个完整的系统。他们的目标是完成一个系统,而各个子服务模块相当于子业务。Git也类似。

事实上,分布式很多时候都开不了集群的,在Dubbo、Hadoop、Elasticsearch都有体现。

现在分布式概念可能我们相对比较清晰了,集群概念可能还比较模糊。另外,集群是如何跟分布式配合的呢,接下来我们继续了解集群。

集群主要分成三大类 (高可用集群, 负载均衡集群,科学计算集群)

高可用集群( High Availability Cluster)

负载均衡集群(Load Balance Cluster)

科学计算集群(High Performance Computing Cluster)

1、高可用集群(High Availability Cluster)

常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如”双机热备”, “双机互备”, “双机”。

高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。

2、负载均衡集群(Load Balance Cluster)

负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。

负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。

3、科学计算集群(High Performance Computing Cluster)

高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。

高性能计算分类: 

3.1、高吞吐计算(High-throughput Computing)

有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME – Search for Extraterrestrial Intelligence at Home )就是这一类型应用。

这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。

所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。

3.2、分布计算(Distributed Computing)

另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。

下面说说这几种集群的应用场景:

高可用集群这里不多作说明。

想Dubbo是比较偏向于负载均衡集群,用过的猿友应该知道(不知道的可以自行了解一下),Dubbo同一个服务是可以有多个提供者的,当一个消费者过来,它要消费那个提供者,这里是有负载均衡机制在里面的。

搜索引擎Elasticsearch比较偏向于科学计算集群的分布计算。

而到这里,可能不少猿友都知道,集群的一些术语:集群容错、负载均衡。

我们以Dubbo为例:

集群容错(http://dubbo.io/User+Guide-zh.htm#UserGuide-zh-%E9%9B%86%E7%BE%A4%E5%AE%B9%E9%94%99)

Dubbo提供了这些容错策略:

集群容错模式:

可以自行扩展集群容错策略,参见:集群扩展

Failover Cluster

失败自动切换,当出现失败,重试其它服务器。(缺省)

通常用于读 *** 作,但重试会带来更长延迟。

可通过retries="2"来设置重试次数(不含第一次)。

Failfast Cluster

快速失败,只发起一次调用,失败立即报错。

通常用于非幂等性的写 *** 作,比如新增记录。

Failsafe Cluster

失败安全,出现异常时,直接忽略。

通常用于写入审计日志等 *** 作。

Failback Cluster

失败自动恢复,后台记录失败请求,定时重发。

通常用于消息通知 *** 作。

Forking Cluster

并行调用多个服务器,只要一个成功即返回。

通常用于实时性要求较高的读 *** 作,但需要浪费更多服务资源。

可通过forks="2"来设置最大并行数。

Broadcast Cluster

广播调用所有提供者,逐个调用,任意一台报错则报错。(2.1.0开始支持)

通常用于通知所有提供者更新缓存或日志等本地资源信息。

负载均衡(http://dubbo.io/User+Guide-zh.htm#UserGuide-zh-%E8%B4%9F%E8%BD%BD%E5%9D%87%E8%A1%A1)

Dubbo提供了这些负载均衡策略:

Random LoadBalance

随机,按权重设置随机概率。

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

轮循,按公约后的权重设置轮循比率。

存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

一致性Hash,相同参数的请求总是发到同一提供者。

当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

算法参见:http://en.wikipedia.org/wiki/Consistent_hashing。

缺省只对第一个参数Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />

缺省用160份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

还有比较好奇它们是怎么通信的?

像早期版本的Elasticsearch的话,自动发现节点机制,ES是一个基于p2p的系统,它先通过广播寻找存在的节点,再通过多播协议来进行节点之间的通信,同时也支持点对点的交互。

而Dubbo是有个注册中心,它支持多个注册中心,但是推荐使用ZooKeeper。关于ZooKeeper可以自行了解,很多集群相关的框架都有使用到它。当然像Elasticsearch是自己有相应的机制实现的。

随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的 磁盘 IO 系统开销 ,甚至 性能 上的瓶颈,而单台服务器的 资源终究是有限 的。

因此在面对业务扩张过程中,应用程序对数据库系统的 健壮性 安全性 扩展性 提出了更高的要求。

以下,我从数据库架构、选型与落地来让大家入门。

数据库会面临什么样的挑战呢?

业务刚开始我们只用单机数据库就够了,但随着业务增长,数据规模和用户规模上升,这个时候数据库会面临IO瓶颈、存储瓶颈、可用性、安全性问题。

为了解决上述的各种问题,数据库衍生了出不同的架构来解决不同的场景需求。

将数据库的写 *** 作和读 *** 作分离,主库接收写请求,使用多个从库副本负责读请求,从库和主库同步更新数据保持数据一致性,从库可以水平扩展,用于面对读请求的增加。

这个模式也就是常说的读写分离,针对的是小规模数据,而且存在大量读 *** 作的场景。

因为主从的数据是相同的,一旦主库宕机的时候,从库可以 切换为主库提供写入 ,所以这个架构也可以提高数据库系统的 安全性 可用性

优点:

缺点:

在数据库遇到 IO瓶颈 过程中,如果IO集中在某一块的业务中,这个时候可以考虑的就是垂直分库,将热点业务拆分出去,避免由 热点业务 密集IO请求 影响了其他正常业务,所以垂直分库也叫 业务分库

优点:

缺点:

在数据库遇到存储瓶颈的时候,由于数据量过大造成索引性能下降。

这个时候可以考虑将数据做水平拆分,针对数据量巨大的单张表,按照某种规则,切分到多张表里面去。

但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈(单个服务器的IO有上限)。

所以水平分表主要还是针对 数据量较大 ,整体业务 请求量较低 的场景。

优点:

缺点:

四、分库分表

在数据库遇到存储瓶颈和IO瓶颈的时候,数据量过大造成索引性能下降,加上同一时间需要处理大规模的业务请求,这个时候单库的IO上限会限制处理效率。

所以需要将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。

分库分表能够有效地缓解单机和单库的 性能瓶颈和压力 ,突破IO、连接数、硬件资源等的瓶颈。

优点:

缺点:

注:分库还是分表核心关键是有没有IO瓶颈

分片方式都有什么呢?

RANGE(范围分片)

将业务表中的某个 关键字段排序 后,按照顺序从0到10000一个表,10001到20000一个表。最常见的就是 按照时间切分 (月表、年表)。

比如将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,银行的交易记录多数是采用这种方式。

优点:

缺点:

HASH(哈希分片)

将订单作为主表,然后将其相关的业务表作为附表,取用户id然后 hash取模 ,分配到不同的数据表或者数据库上。

优点:

缺点:

讲到这里,我们已经知道数据库有哪些架构,解决的是哪些问题,因此, 我们在日常设计中需要根据数据的特点,数据的倾向性,数据的安全性等来选择不同的架构

那么,我们应该如何选择数据库架构呢?

虽然把上面的架构全部组合在一起可以形成一个强大的高可用,高负载的数据库系统,但是架构选择合适才是最重要的。

混合架构虽然能够解决所有的场景的问题,但是也会面临更多的挑战,你以为的完美架构,背后其实有着更多的坑。

1、对事务支持

分库分表后(无论是垂直还是水平拆分),就成了分布式事务了,如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价(XA事务);如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担(TCC、SAGA)。

2、多库结果集合并 (group by,order by)

由于数据分布于不同的数据库中,无法直接对其做分页、分组、排序等 *** 作,一般应对这种多库结果集合并的查询业务都需要采用数据清洗、同步等其他手段处理(TIDB、KUDU等)。

3、数据延迟

主从架构下的多副本机制和水平分库后的聚合库都会存在主数据和副本数据之间的延迟问题。

4、跨库join

分库分表后表之间的关联 *** 作将受到限制,我们无法join位于不同分库的表(垂直),也无法join分表粒度不同的表(水平), 结果原本一次查询就能够完成的业务,可能需要多次查询才能完成。

5、分片扩容

水平分片之后,一旦需要做扩容时。需要将对应的数据做一次迁移,成本代价都极高的。

6、ID生成

分库分表后由于数据库独立,原有的基于数据库自增ID将无法再使用,这个时候需要采用其他外部的ID生成方案。

一、应用层依赖类(JDBC)

这类分库分表中间件的特点就是和应用强耦合,需要应用显示依赖相应的jar包(以Java为例),比如知名的TDDL、当当开源的 sharding-jdbc 、蘑菇街的TSharding等。

此类中间件的基本思路就是重新实现JDBC的API,通过重新实现 DataSource PrepareStatement 等 *** 作数据库的接口,让应用层在 基本 不改变业务代码的情况下透明地实现分库分表的能力。

中间件给上层应用提供熟悉的JDBC API,内部通过 sql解析 sql重写 sql路由 等一系列的准备工作获取真正可执行的sql,然后底层再按照传统的方法(比如数据库连接池)获取物理连接来执行sql,最后把数据 结果合并 处理成ResultSet返回给应用层。

优点

缺点

二、中间层代理类(Proxy)

这类分库分表中间件的核心原理是在应用和数据库的连接之间搭起一个 代理层 ,上层应用以 标准的MySQL协议 来连接代理层,然后代理层负责 转发请求 到底层的MySQL物理实例,这种方式对应用只有一个要求,就是只要用MySQL协议来通信即可。

所以用MySQL Navicat这种纯的客户端都可以直接连接你的分布式数据库,自然也天然 支持所有的编程语言

在技术实现上除了和应用层依赖类中间件基本相似外,代理类的分库分表产品必须实现标准的MySQL协议,某种意义上讲数据库代理层转发的就是MySQL协议请求,就像Nginx转发的是Http协议请求。

比较有代表性的产品有开创性质的Amoeba、阿里开源的Cobar、社区发展比较好的 Mycat (基于Cobar开发)等。

优点

缺点

JDBC方案 :无中心化架构,兼容市面上大多数关系型数据库,适用于开发高性能的轻量级 OLTP 应用(面向前台)。

Proxy方案 :提供静态入口以及异构语言的支持,适用于 OLAP 应用(面向后台)以及对分片数据库进行管理和运维的场景。

混合方案 :在大型复杂系统中存在面向C端用户的前台应用,也有面向企业分析的后台应用,这个时候就可以采用混合模式。

JDBC 采用无中心化架构,适用于 Java 开发的高性能的轻量级 OLTP 应用;Proxy 提供静态入口以及异构语言的支持,适用于 OLAP 应用以及对分片数据库进行管理和运维的场景。

ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由 Sharding-JDBC Sharding-Proxy Sharding-Sidecar (计划中)这3款相互独立的产品组成,他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。

ShardingSphere提供的核心功能:

Sharding-Proxy

定位为透明化的 数据库代理端 ,提供封装了 数据库二进制协议的服务端版本 ,用于完成对 异构语言的支持

目前已提供MySQL版本,它可以使用 任何兼容MySQL协议的访问客户端 (如:MySQL Command Client, MySQL Workbench, Navicat等) *** 作数据,对DBA更加友好。

应用程序完全透明 ,可直接当做MySQL使用。

适用于任何兼容MySQL协议的客户端。

Sharding-JDBC

定位为 轻量级Java框架 ,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为 增强版的JDBC驱动,完全兼容JDBC和各种ORM框架

以电商SaaS系统为例,前台应用采用Sharding-JDBC,根据业务场景的差异主要分为三种方案。

分库(用户)

问题解析:头部企业日活高并发高,单独分库避免干扰其他企业用户,用户数据的增长缓慢可以不分表。

拆分维度:企业ID分库

拆分策略:头部企业单独库、非头部企业一个库

分库分表(订单)

问题解析:订单数据增长速度较快,在分库之余需要分表。

拆分维度:企业ID分库、用户ID分表

拆分策略:头部企业单独库、非头部企业一个库,分库之后用户ID取模拆分表

单库分表(附件)

问题解析:附件数据特点是并发量不大,只需要解决数据增长问题,所以单库IO足以支撑的情况下分表即可。

拆分维度:用户ID分表

拆分策略:用户ID取模分表

问题一:分布式事务

分布式事务过于复杂也是分布式系统最难处理的问题,由于篇幅有限,后续会开篇专讲这一块内容。

问题二:分布式ID

问题三:跨片查询

举个例子,以用户id分片之后,需要根据企业id查询企业所有用户信息。

sharding针对跨片查询也是能够支持的,本质上sharding的跨片查询是采用同时查询多个分片的数据,然后聚合结果返回,这个方式对资源耗费比较大,特别是对数据库连接资源的消耗。

假设分4个数据库,8个表,则sharding会同时发出32个SQL去查询。一下子消耗掉了32个连接;

特别是针对单库分表的情况要注意,假设单库分64个表,则要消耗64个连接。如果我们部署了2个节点,这个时候两个节点同时查询的话,就会遇到数据库连接数上限问题(mysql默认100连接数)

问题四:分片扩容

随着数据增长,每个片区的数据也会达到瓶颈,这个时候需要将原有的分片数量进行增加。由于增加了片区,原先的hash规则也跟着变化,造成了需要将旧数据做迁移。

假设原先1个亿的数据,hash分64个表,现在增长到50亿的数据,需要扩容到128个表,一旦扩容就需要将这50亿的数据做一次迁移,迁移成本是无法想象的。

问题五:一致性哈希

首先,求出每个 服务器的hash值 ,将其配置到一个 0~2^n 的圆环上 (n通常取32)

其次,用同样的方法求出待 存储对象的主键 hash值 ,也将其配置到这个圆环上。

然后,从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。

一致性hash的优点在于加入和删除节点时只会影响到在哈希环中相邻的节点,而对其他节点没有影响。

所以使用一致性哈希在集群扩容过程中可以减少数据的迁移。

好了,这次分享到这里,我们日常的实践可能只会用到其中一种方案,但它不是数据库架构的全貌,打开技术视野,才能更好地把存储工具利用起来。

老规矩,一键三连,日入两千,点赞在看,年薪百万!

本文作者:Jensen

7年Java老兵,小米主题设计师,手机输入法设计师,ProcessOn特邀讲师。

曾涉猎航空、电信、IoT、垂直电商产品研发,现就职于某知名电商企业。

技术公众号 【架构师修行录】 号主,专注于分享日常架构、技术、职场干货,Java Goals:架构师。

交个朋友,一起成长!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6688450.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-26
下一篇 2023-03-26

发表评论

登录后才能评论

评论列表(0条)

保存