大数据处理之一:收集
大数据的收集是指运用多个数据库来接收发自客户端(Web、App或许传感器方式等)的 数据,而且用户能够经过这些数据库来进行简略的查询和处理作业,在大数据的收集进程中,其主要特色和应战是并发数高,因为同时有可能会有成千上万的用户 来进行拜访和 *** 作
大数据处理之二:导入/预处理
虽然收集端本身会有许多数据库,但是假如要对这些海量数据进行有效的剖析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或许分布式存储集群,而且能够在导入基础上做一些简略的清洗和预处理作业。导入与预处理进程的特色和应战主要是导入的数据量大,每秒钟的导入量经常会到达百兆,甚至千兆等级。
大数据处理之三:核算/剖析
核算与剖析主要运用分布式数据库,或许分布式核算集群来对存储于其内的海量数据进行普通 的剖析和分类汇总等,以满足大多数常见的剖析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及根据 MySQL的列式存储Infobright等,而一些批处理,或许根据半结构化数据的需求能够运用Hadoop。 核算与剖析这部分的主要特色和应战是剖析触及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:发掘
主要是在现有数据上面进行根据各种算法的核算,然后起到预测(Predict)的作用,然后实现一些高等级数据剖析的需求。主要运用的工具有Hadoop的Mahout等。该进程的特色和应战主要是用于发掘的算法很复杂,并 且核算触及的数据量和核算量都很大,常用数据发掘算法都以单线程为主。
关于如何进行大数据处理,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
大数据解决方案主要用于存储二进制类型的数据。
数据还包括了结构化数据和非结构化数据,邮件,Word,图片,音频信息,视频信息等各种类型数据,已经不是以往的关系型数据库可以解决的了。非结构化数据的超大规模和增长,占总数据量的80~90%,比结构化数据增长快10倍到50倍,是传统数据仓库的10倍到50倍。
大数据特点:
海量数据有不同格式,第一种是结构化,我们常见的数据,还有半结据化网页数据,还有非结构化视频音频数据。而且这些数据化他们处理方式是比较大的。数据类型繁多,如网络日志、视频、图片、地理位置信息,等等。
大数据的概念很广,不知道你说的是那种!如果是数据库里面比如说像数据仓库这种:
一般是用一下几种方法:
分区,压缩,并行。
如果是广义的大数据,oracle的解决方案是:
oracle 的nosql
extradata
加上hadoop这种!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)