如何选择简单易用的数据库

如何选择简单易用的数据库,第1张

1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。

2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。

3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。

4.数据量较小,比如十万以下,sqlite、access都可以。

上面是基于单表 *** 作的数据量,你看着选。

简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:

小巧灵活sqlite

这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口, java、 python、c#等都可轻松 *** 作,如果你存储数据量不多,只是本地简单的 *** 作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:

专业强大mysql

这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:

免费开源postgresql

这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:

当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

最符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。

如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。

最近杀出来的airtable,更是简单高效,界面美观, *** 作与电子表格相当,发展势头也非常迅猛。

二者侧重点有所不同,用户可根据需要选择

作为一个软件开发人员,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:

1.MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。

2.MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。

3.MySQL高度兼容标准SQL,这对于以后迁移到其他数据库而言,也能很大程度地降低学习成本。

希望我的回答能够对你有所帮助!!![耶][耶][耶]

Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。

遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!

现在, 我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?

MySQL数据库,90%的企业都会选择它

数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。

如果你只是上班打卡,用SQL server就可以了;

如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;

不过90%的企业或个人,首选数据库都是MySQL数据库。

为什么这么说?

因为,它集 低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码 等特性于一身,所以在金融、财务、网站、 数据处理 等应用领域,它占据着独一无二的优势。

这也是几乎所有企业都选择它,来存储数据的原因。

加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库 *** 作的工具。

因而,MySQL尤其受个人,以及中小企业的推崇。

虽然MySQL数据库简单易用,但我还是不会部署该怎么办?

别担心,现在市面上已经出现了,一种自带数据库的新型办公软件。

比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。 (文末有免费获取方式)

云表内嵌的MySQL数据库,有何优点?

1. 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。

2. 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是 “拿来即用” 就好)

3. 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。

4. 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。

内嵌的MySQL数据库是否可靠

云表不仅是一款办公软件,同时还是一款开发工具。

通过它,你将解决以下问题:

复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用......

你还可以通过它,与电子称、地磅等进行对接,与用友金蝶等三方系统集成,生成条形码,扫码出入库,生成移动端APP...... 基本上业务所需的功能,你都可以放心交给它做。

它最大的亮点就是,你可以 用使用excel的手法,用它来开发业务应用。

而且,可视化的 拖拉拽 之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。

没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。

不过,大家最关心的应该是数据安全问题吧。

数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!

正因如此,像 恒逸石化、许继电气、航天科工委、中铁、中冶、云南小松 等大型集团,才鼓励内部员工去学习云表。

篇幅所限,只说到这里,说太多你也不会看。

免费 的软获取方式在下方:

数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!

题主强调了简单易用。所以推荐最简单三个。

1.Access。

2.Excel。

3.飞书文档、腾讯文档、石墨文档等的表格。

如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2003或者2007,Access这些年微软一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。

还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多

这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面 *** 作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。

个人使用数据库的话,只存数据不做分析,SQLite就足够了。

1.数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。

1. 数据挖掘能做什么?

1)数据挖掘能做以下六种不同事情(分析方法):

· 分类 (Classification)

· 估值(Estimation)

· 预言(Prediction)

· 相关性分组或关联规则(Affinity grouping or association rules)

· 聚集(Clustering)

· 描述和可视化(Des cription and Visualization)

2)数据挖掘分类

以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘

· 直接数据挖掘

目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以

理解成数据库中表的属性,即列)进行描述。

· 间接数据挖掘

目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系

· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘

3)各种分析方法的简介

· 分类 (Classification)

首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分

类模型,对于没有分类的数据进行分类。

例子:

a. xyk申请者,分类为低、中、高风险

b. 分配客户到预先定义的客户分片

注意: 类的个数是确定的,预先定义好的

· 估值(Estimation)

估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的

输出;分类的类别是确定数目的,估值的量是不确定的。

例子:

a. 根据购买模式,估计一个家庭的孩子个数

b. 根据购买模式,估计一个家庭的收入

c. 估计real estate的价值

一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的

连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运

用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。

· 预言(Prediction)

通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用

于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。

预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时

间后,才知道预言准确性是多少。

· 相关性分组或关联规则(Affinity grouping or association rules)

决定哪些事情将一起发生。

例子:

a. 超市中客户在购买A的同时,经常会购买B,即A =>B(关联规则)

b. 客户在购买A后,隔一段时间,会购买B (序列分析)

· 聚集(Clustering)

聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先

定义好的类,不需要训练集。

例子:

a. 一些特定症状的聚集可能预示了一个特定的疾病

b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群

聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一

类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,

回答问题,可能效果更好。

· 描述和可视化(Des cription and Visualization)

是对数据挖掘结果的表示方式。

2.数据挖掘的商业背景

数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有

价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。

1)数据挖掘作为研究工具 (Research)

2)数据挖掘提高过程控制(Process Improvement)

3)数据挖掘作为市场营销工具(Marketing)

4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)

3.数据挖掘的技术背景

1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力

2)数据挖掘和机器学习(Machine Learning)

· 机器学习是计算机科学和人工智能AI发展的产物

· 机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决

策树)

· 数据挖掘由来

数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴

的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预

言模型的经济学家之间没有技术的重叠。

3)数据挖掘和统计

统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等

4)数据挖掘和决策支持系统

· 数据仓库

· OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库

· 决策支持工具融合

将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。

4. 数据挖掘的社会背景

数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上

,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中

神秘,它不可能是完全正确的。

客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在

美国对银行xyk客户信用评级的模型运行得非常成功,但是,它可能不适合中国。

2.数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合

数据仓库,英文名称为Data Warehouse,可简写为DW。

数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。

◆面向主题: *** 作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据 *** 作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询 *** 作,但修改和删除 *** 作很少,通常只需要定期的加载、刷新。

◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

数据仓库是一个过程而不是一个项目。

数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。

从功能结构化分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分

数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。

并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

3.数据挖掘和数据仓库以数据库为基础。

[size=14.399999618530273px]做分类预测等数据挖掘任务时,需要测试所建立模型的准确性时,如没有事先划分好的训练集与测试集,常采用的方案有。

[size=14.399999618530273px]A. 随机划分数据集:将数据集随机划分成训练集和测试集,一般按照3:1的比例划分,其中3/4的数据集用于模型的建立,1/4数据集用于测试所建立模型的性能。最终模型的性能,通过K次随机划分数据集,可以得到K次划分的模型性能的平均值,作为建立模型的性能。

[size=14.399999618530273px]B. 交叉检验(Cross-Validation):交叉检验,是按一定的方式将数据集划分成训练集和测试集,每个数据记录既有作为训练集,又有作为测试集。常用的交叉检验有:

[size=14.399999618530273px] 》Leave One Out Cross-Validation:每次选择一个数据作为测试集,其余的N-1个作为训练集用于测试模型的性能,共执行N次测试,N次测试的结果作为最终模型的性能;

[size=14.399999618530273px] 》K-Fold Cross-Validation:将数据集划分成K份,每次是其中的k-1份作为训练集建立模型,剩余的1份作为测试集检测模型性能,共执行K次性能测试。常用的是10折交叉检验,或采用随机划分数据集法将数据集划分成K份,此时可采用K-ford M-time Cross-Validation。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6692742.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-26
下一篇 2023-03-26

发表评论

登录后才能评论

评论列表(0条)

保存