不读取无效数据:降低 I/O 开销,同时提高每次 I/O 的效率,从而大大提高查询性能。查询语句只从磁盘上读取所需要的列,其他列的数据是不需要读取的。例如,有两张表,每张表100GB 且有100 列,大多数查询只关注几个列,采用列存储,不需要像行存数据库一样,将整行数据取出,只取出需要的列。磁盘 I/0 是行存储的 1/10或更少,查询响应时间提高 10 倍以上。
高压缩比:压缩比可以达到 5 ~ 20 倍以上,数据占有空间降低到传统数据库的1/10 ,节省了存储设备的开销。
当数据库的大小与数据库服务器内存大小之比达到或超过 2:1 (典型的大型系统配置值)时,列存的 I/O 优势就显得更加明显;
GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只 *** 作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O *** 作提升数据吞吐量,从而进一步提高I/O效率。
由于采用列存储技术,还可以实现高效的透明压缩。
由于数据按列包存储,每个数据包内都是同构数据,内容相关性很高,这使得GBase 8a 更易于实现压缩,压缩比通常能够达到 1:10 甚至更优。这使得能够同时在磁盘 I/O 和 Cache I/O 上都提升数据库的性能,使 GBase 8a 在某些场景下的运算性能比传统数据库快 100 倍以上。
GBase 8a 允许用户根据需要设置配置文件,选择是否进行压缩。在启用压缩的情况下GBase 8a 根据数据的不同特性以及不同的分布状况,自动采用相应的压缩算法,如:
行程编码(适用于大量连续重复的数据,特别是排序数据);
基于数据的差值编码(适用于重复率低,但彼此差值较小的数据列);
基于位置的差值编码(适用于重复率高,但分布比较随机的数据列)。
列式数据库是以列相关存储架构进行数据存储的数据库,主要适合与批量数据处理和即席查询。GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只 *** 作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O *** 作提升数据吞吐量,从而进一步提高I/O效率。
由于采用列存储技术,还可以实现高效的透明压缩。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)