大数据常用哪些数据库

大数据常用哪些数据库,第1张

通常数据分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL *** 作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。

大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写 *** 作,从数据库是负责读 *** 作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。

NoSQL数据库大致分为5种类型

1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个

(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。

(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项

(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。

(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。

2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个

(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。

(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。

(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。

(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。

(6)Voldemort:具备数据备份和分布式键值存储系统。

(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。

3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个

(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。

(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapReduce查询,以及一个使用HTTP的API。

(3)Couchbase:NoSQL文档数据库基于JSON模型。

(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。

(5)MarkLogic:MarkLogic NoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。

4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个

(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。

(2)InfiniteGraph:一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。

(3)AllegroGraph:AllegroGraph是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS++和Prolog推理。

5、内存数据网格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个

(1)Hazelcast:Hazelcast CE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。

(2)Oracle Coherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。

(3)Terracotta BigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。

(4)GemFire:Vmware vFabric GemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。

(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer 及client/server 架构。

(6)GridGain:分布式、面向对象、基于内存、SQL+NoSQL键值数据库。支持ACID事务。

(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。

1、MySQL

MySQL是一个开源的关系型数据库管理系统,为甲骨文公司产品。支持多种存储引擎、集群、全文索引、支持多线程、充分利用CPU资源、支持多用户等其它许多非常专业的功能。

MySQL由于性能高、成本低、可靠性好已经成为最流行的开源数据库,并且被广泛应用在Web应用程序以及其它中小型项目上。从WordPress到Movable

Type都把MySQL作为默认的数据库。此外,自甲骨文收购MySQL以后,又将MySQL闭源的潜在风险,因此社区采用分支的方式避开这种风险,开发并运营着完全兼容MySQL的MariaDB数据库。

2、MongoDB

MongoDB是一款开源、面向文档并且也是当下人气最旺的Nosql数据库,它也是一款介于关系数据库和非关系数据库之间的产品。Mongo最大特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。还具有高性能、易部署、易使用,存储数据非常方便等特点。

3、Hadoop

Hadoop是一个开源的、基于列存储模型的分布式数据库,它是Apache Hadoop项目的一部分,开发语言为Java。

Hadoop不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是Hadoop基于列的而不是基于行的模式。且具有高可靠性、高性能、可伸缩、并建立在关系模型基础上的分布式数据库。

4、Redis

Redis是一个开源、支持网络、基于内存、键值对存储数据库。开发者无需存储数字和字符串即可dump整个哈希值、列表、集合以及其它复杂的结果存储,此外,Redis还提供复制/同步和持久化等功能。

Redis是一个高性能的键值对数据库。Redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用。

5、MariaDB

MariaDB数据库管理系统是MySQL的一个分支,完全兼容MySQL,包括API和命令行,使之能轻松成为MySQL的代替品。在存储引擎方面,使用XtraDB来代替MySQL的InnoDB。另外又添加了一些功能,以支持本地的非阻塞 *** 作和进度报告。这意味着,所有使用MySQL的连接器、库和应用程序也将会在MariaDB下工作。

因为Redis具有在数据存储中快速读写数据的能力,所以它比关系型数据库更具有性能优势。但是,关键值数据存储是简单的它们没有一个类似于

SQL的查询语言或者结构化的数据模型。相反,它们有一个把键值作为与数值相关的标识符来使用的简单字典或哈希模式。管理员使用这些键来进行数值的存储和

检索。

键值存储是简单快速的,它可用于实现丰富数据模型和关系型数据库查询功能的良好匹配。但是,有时候还是使用键值与关系型数据库的组合为好。此外,还有很多商业支持的键值数据库,包括Redis、Riak和Areospike等。

为了运行一个优化热门查询性能的Redis缓存,首先应确定你希望缓存的查询结果。其中,应重点关注最常用的和最耗时的查询,然后确定应缓冲查询中的数据。为简便起见,缓存查询返回的所有列值。

为键值定义一个命名约定可以使用行主键和列名的组合来构造密钥。例如,其主键ID为 198278的 产品描述可以‘198278:descry’的键值进行存储。确保你的命名规则是简单和规则驱动的,以便于使用最少的代码来实现键的程序化创建。

接下来,确定是运行Redis缓存作为自助管理服务还是运行亚马逊的ElastiCache。运行用户自己的Redis实例将赋予管理人员对缓存的完全控制权。而这一控制权意味着灵活性,例如当有超出容量的情况出现时,管理人员有使用现有保留实例的权力。

此外,当用户想要把应用程序从一家云计算供应商迁移至另一家时,他们会发现完整的管理控制权限是非常有用的。

如果用户选择运行一个自助管理的Redis实例,可下载服务器。Redis的客户端支持30种以上编程语言——从Java和Python到Prolog和Smalltalk。

已经使用AWS环境的企业可能会想要使用ElastiCache。除了诸如托管打补丁这样的优点之外,亚马逊ElastiCache支持一系列高速

缓存优化的节点类型,具体包括从中型到2X的m3节点、从大型到8X的r3节点以及从微型到中型的t2节点。ElastiCache还支持一些上一代的节

点类型,例如选择m1、m2、t1和c1节点。

ElastiCache还支持多个可用区。如果有一个节点发生故障,一个读 *** 作复制节点将取代故障节点。任何需要确保应用程序运行的DNS变更都是

自动完成的,同时会创建一个新的读 *** 作副本。ElastiCache允许基于单位时间使用率的按需定价模式,以及一年期或三年期预付费的节点使用条款。完

整定价清单可以在这里找到。

如果使用Redis缓存和亚马逊ElastiCache,那么就可以从AWS管理控制台启动一个集群。除了设置Redis服务外,还需要修改应用程

序代码以便于能够使用缓存。一个常用的模式就是,检查缓存中是否存在有一个键值,如果没有就执行一个SQL查询以检索数据,然后将其存储在缓存中。当缓冲

存满时,可以配置Redis删除旧数据,这样就不需要用户使用专门的代码来处理缓存存满的情况了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6714318.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-27
下一篇 2023-03-27

发表评论

登录后才能评论

评论列表(0条)

保存