当我们的数据库压力主键变大的时候,我们会尝试增加一些从节点来分摊主节点的查询压力。而一般来说,我们是用一主多从的结构来作为读写分离的基本结构。
而一般来说我们有两种常用的方法来实现读且分离架构:
客户端直接分离
这种方式是由客户端,或者我们的微服务直接进行数据库的读写选择。将读库选择路由到主库上进行,将查询路由到从主库上进行。
这种方式的优点在于因为是直连所以性能比较高,但是需要由业务团队了解数据库的实例细节,当数据库做调整的时候就需要业务侧同步改造。
使用数据中间件代理
这种方式是由一层代理层对数据的读写做分发,业务层将所有的请求都通过代理来实现。
这种方式的优点在于对于业务层不需要感知到数据库的存在,但问题在于数据中间件的性能要求较高,还需要专人来进行优化和维护,整体架构较为复杂。
但是我们发现,尽管这两种方式各有优劣。但核心都是通过数据的写入、查询请求的路由而实现的,那么这就会引发标题的问题:
主备同步存在延迟,所以在延迟时间内对插入的内容进行查询则无法查询到最新提交的事务。
那么如何保证主从一致性的问题,其实就变成了如何处理主从延迟的问题。
根据项目的大小,团队的规模以及主机的部署模式。我们处理问题的方法也有很多种。
最简单强硬的就是强制读主库。
一般情况下我们在不同的查询中会有不同程度的一致性要求。我们可以将需要保证数据一致性的请求配置强制查询主库,而对于无强依赖的查询请求仍然查询备库。
尽管这个方案不是很优雅,但是是最简单实现的方法,并且在Spring等框架的支持下一般只需要加一个注解就能实现。但这个方法的问题也是显而易见的,如果存在大量的强一致性要求的查询语句,则相当于没有进行读写分离与扩展。那么这种方法就会导致系统在数据库层面没有有效的扩展手段了。
由于问题产生的来源是主从延迟,所以在下一次查询的时候进行一段时间的等待以弥补这种延迟即可。
所以在进行主库的数据插入之后,让数据库数据连接或者对应的执行线程等待一段时间后返回。通过等待时间来消化掉主从备份的延迟时间。但是这个方法也有一些问题比如:这个等待时间一般是固定的,即便主从已经无延迟了也会继续等待到时间结束;如果在服务高峰时期,有可能数据在等待时间结束后仍然没有完成同步则仍然会存在一致性问题。
但这种方法优雅的地方是可以配合业务来进行实现,举例来说当用户下单之后,通过下单送卷或者下单抽奖的方式从前端拖住用户,从而当用户在一次连续 *** 作中再次查询自己订单的时候中间必然会间隔一定时间,也就让需要再次查询数据的时候保证了数据的一致性。
上述两种方案看起来可能不那么“技术”,感觉有点投机取巧。那么下面咱们可以分两种情况来讨论用更高技术的方法如何实现一致性。
对于主从复制来说,是当主库完成一个事务后,通知给从库,当从库接受到后,则主库完成返回客户端。所以当主库完成事务后,仅能确保从库已经接受到了,但是不能保证从库执行完成,也就是导致了主从备份延迟。
但是从库执行数据是有进度的,而这个进度是可以通过show slave status语句中的seconds_behind_master来进行描述,这个参数描述从库落后了主库数据多少秒,当这个参数为0时,我们可以认为从库和主库已经基本上没有延迟了,那么这时候就可以查询请求。
但seconds_behind_master是秒级的,所以只能大概地判断,由于精度较低,所以还是可能出现不一致的情况。
如果要求精准执行的话,我们可以比较同步文件的执行记录,具体来说是:
所以当Relay_Master_Log_File和Exec_Master_Log_Pos和其一致的时候,就说明从库的已执行数据已经追上主库了,那么这时就可以说保证了主从一致性了
但是比较同步文件的执行记录方法的问题在于,如果当前的这个事务的binlog尚未传入到从库,即Master_Log_File和Read_Master_Log_Pos未更新,也就无法保证从库已经包含最新的主库事务了。
而为了保证在一主一备的情况下,从库里一定接受到数据了,也就是Master_Log_File和Read_Master_Log_Pos中的数据是和主库一致的,我们可以开启semi-sync replication半同步复制。
半同步复制的原理是在主库提交事务前先将binlog发送给从库,然后当从库接受后返回一个应答,主库只有在接受到这个应答之后才返回事务执行完成。这样就可以保证从库的Master_Log_File和Read_Master_Log_Pos与主库是一致的,从而解决了主从一致的问题。
半同步复制可以解决一主一备的情况,但是当一主多备的时候,只要主库接受到一个从库的应答,就会返回事务执行完成。而这时当请求打到未完成同步的从库上时就会发生主从延迟。
所以针对一主多备的情况,我们可以将目光集中在执行查询的从库上,即确保 我们即将查询的备库已经执行了我们预期的事务。 那么我们的问题就变成两部分:1. 确认主库事务,2. 查询数据条件。
确认主库事务
当我们提交完一个事务后,可以通过执行show master status来得到主库中的数据事务文件(File)和位置记录(Position)。
查询数据条件
当我们要查询从库数据的时候,我们可以通过语句select master_pos_wait(File, Position, 1)来查询当前是否已经执行到了该记录(当返回值>=0的时候说明已经执行过了)。其中最后的数字1表示阻塞时长。
通过先确认主库事务记录,再判确认备库是否已经执行了了主库对应的事务。
但是可以发现,这种方法要求查询的时候知道主库的事务信息,对场景有很大的限制。
主从一致的问题源自主从延迟,所以我们就是从如何消除延迟来解决问题。简单点的方案我们可以不走备库、或者直接等待一段时间来忽略延迟的影响。在一主一备的情况下我们可以粗力度的用seconds_behind_master来判断或者用Relay_Master_Log_File和Exec_Master_Log_Pos来判断。而当一主多从的情况下我们则需要在查询前传入主库执行的事务记录才能保证数据一致性。
可以看出,当数据规模和部署方式变更的时候,好的解决方案将会越来越多。我认为根据实际业务情况选择最合适的方法才是最重要的。
用 pt-table-checksum 时,会不会影响业务性能?
实验
实验开始前,给大家分享一个小经验:任何性能评估,不要相信别人的评测结果,要在自己的环境上测试,并(大概)知晓原理。
我们先建一对主从:
然后用 mysqlslap跑一个持续的压力:
开另外一个会话,将 master 上的 general log 打开:
然后通过 pt-table-checksum 进行一次比较:
查看 master 的 general log,由于 mysqlslap 的影响,general log 中有很多内容,我们找到与 pt-table-checksum 相关的线程:
将该线程的 *** 作单独列出来:
*** 作比较多,我们一点一点来说明:
这里工具调小了 innodb 锁等待时间。使得之后的 *** 作,只要在 innodb 上稍微有锁等待,就会马上放弃 *** 作,对业务影响很小。
另外工具调小了 wait_timeout 时间,倒是没有特别的作用。
工具将隔离级别调整为了 RR 级别,事务的维护代价会比 RC 要高,不过后面我们会看到工具使用的每个事务都很小,加上之前提到 innodb 锁等待时间调到很小,对线上业务产生的成本比较小。
RR 级别是数据对比的基本要求。
工具通过一系列 *** 作,了解表的概况。工具是一个数据块一个数据块进行校验,这里获取了第一个数据块的下边界。
接下来工具获取了下一个数据块的下边界,每个 SQL前都会 EXPLAIN 一下,看一下执行成本,非常小心翼翼。
之后工具获取了一个数据块的 checksum,这个数据块不大,如果跟业务流量有冲突,会马上出发 innodb 的锁超时,立刻退让。
以上是 pt-table-checksum 的一些设计,可以看到这几处都是精心维护了业务流量不受影响。
工具还设计了其他的一些机制保障业务流量,比如参数 --max-load 和 --pause-file 等,还有精心设计的数据块划分方法,索引选择方法等。大家根据自己的情况配合使用即可达到很好的效果。
总结
本期我们介绍了简单分析 pt-table-checksum 是否会影响业务流量,坊间会流传工具的各种参数建议或者不建议使用,算命的情况比较多,大家都可以用简单的实验来分析其中机制。
还是那个观点,性能测试不能相信道听途说,得通过实验去分析。
最简单的减少slave同步延时的方案就是在架构上做优化,尽量让主库的DDL快速执行。还有就是主库是写,对数据安全性较高,比如sync_binlog=1,innodb_flush_log_at_trx_commit = 1 之类的设置,而slave则不需要这么高的数据安全,完全可以讲sync_binlog设置为0或者关闭binlog,innodb_flushlog也可以设置为0来提高sql的执行效率。另外就是使用比主库更好的硬件设备作为slave。mysql-5.6.3已经支持了多线程的主从复制。原理和丁奇的类似,丁奇的是以表做多线程,Oracle使用的是以数据库(schema)为单位做多线程,不同的库可以使用不同的复制线程。
sync_binlog=1
This makes MySQL synchronize the binary log’s contents to disk each time it commits a transaction
默认情况下,并不是每次写入时都将binlog与硬盘同步。因此如果 *** 作系统或机器(不仅仅是MySQL服务器)崩溃,有可能binlog中最后的语句丢 失了。要想防止这种情况,你可以使用sync_binlog全局变量(1是最安全的值,但也是最慢的),使binlog在每N次binlog写入后与硬盘 同步。即使sync_binlog设置为1,出现崩溃时,也有可能表内容和binlog内容之间存在不一致性。如果使用InnoDB表,MySQL服务器 处理COMMIT语句,它将整个事务写入binlog并将事务提交到InnoDB中。如果在两次 *** 作之间出现崩溃,重启时,事务被InnoDB回滚,但仍 然存在binlog中。可以用--innodb-safe-binlog选项来增加InnoDB表内容和binlog之间的一致性。(注释:在MySQL 5.1中不需要--innodb-safe-binlog;由于引入了XA事务支持,该选项作废了),该选项可以提供更大程度的安全,使每个事务的 binlog(sync_binlog =1)和(默认情况为真)InnoDB日志与硬盘同步,该选项的效果是崩溃后重启时,在滚回事务后,MySQL服务器从binlog剪切回滚的 InnoDB事务。这样可以确保binlog反馈InnoDB表的确切数据等,并使从服务器保持与主服务器保持同步(不接收 回滚的语句)。
innodb_flush_log_at_trx_commit (这个很管用)
抱怨Innodb比MyISAM慢 100倍?那么你大概是忘了调整这个值。默认值1的意思是每一次事务提交或事务外的指令都需要把日志写入(flush)硬盘,这是很费时的。特别是使用电 池供电缓存(Battery backed up cache)时。设成2对于很多运用,特别是从MyISAM表转过来的是可以的,它的意思是不写入硬盘而是写入系统缓存。日志仍然会每秒flush到硬 盘,所以你一般不会丢失超过1-2秒的更新。设成0会更快一点,但安全方面比较差,即使MySQL挂了也可能会丢失事务的数据。而值2只会在整个 *** 作系统 挂了时才可能丢数据。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)