这里通过将多级结构的数据在同一张表中(无需多张表进行关联),并通过level的巧妙设计来实现单表查询。
新一轮油气资源评价数据库是建立在国家层面上的数据库,数据库设计首先立足于国家能源政策和战略制定的宏观要求,还要结合油气资源评价的工作特征和各个评价项目及资源的具体情况。使用当前最流行和最成熟的数据库技术进行数据库的总体结构设计。
数据库的设计以《石油工业数据库设计规范》为指导标准,以《石油勘探开发数据》为设计基础,借鉴前人的优秀设计理念和思路,参考国内外优秀的资源评价数据库和油气资源数据库的设计技术优势,结合本轮资源评价的具体特点,按照面向对象的设计和面向过程的设计相结合的设计方法,进行数据库的数据划分设计。
油气资源评价数据库要满足新一轮全国油气资源评价工作的常规油气资源评价、煤层气资源评价、油砂资源评价、油页岩资源评价四个油气资源评价的数据需求。进行数据库具体数据内容设计。
并且,数据库的设计要为油气资源评价的快速、动态评价和远程评价工作的需求保留足够数据扩展接口,数据库具有良好开放性、兼容性和可扩充性。
(一)数据划分
数据库内存放的数据将支持资源评价的整个过程。为了能更好地管理库中数据,需要对整个过程中将用到的数据进行分类管理。具体分类方式如下(图4-11):
图4-11 数据分类示意图
1.按照应用类型划分
按照数据在资源评价过程中的应用类型划分,可以划分为基础数据、参数数据和评价结果数据。
基础数据是指从勘探生产活动及认识中直接获取的原始数据,这些数据一般没有经过复杂的处理和计算过程。如分析化验数据、钻井地质数据、盆地基础数据等。这些数据是整个评价工作的基础。
参数数据是指在评价过程中各种评价方法和软件直接使用的参数数据。
评价结果数据是指资源评价中产生的各种评价结果数据,如资源量结果数据、地质评价结果数据等。
2.按照评价对象划分
本次评价共分为大区、评价单元、计算单元三个层次,在研究中又使用了盆地、一级构造单元,在评价对象总体考虑中按照评价对象将数据划分为大区、评价单元、计算单元等类型。
3.按照获取方式划分
按照获取方式可以将数据分为直接获取、研究获取、间接获取几类。
4.按照存储类型划分
按照存储类型可以将数据划分为结构化数据和非结构化数据。
结构化数据是指能够用现有的关系数据库系统直接管理的数据,进一步又可以分为定量数据和定性数据两类。
非结构化数据是指不能用现有的关系数据库系统直接管理和 *** 作的数据,它必须借助于另外的工具管理和 *** 作。如图件数据、文档数据等。
库中数据类型的划分共分六个层次逐次划分,包括:数据存储类型→资源类型→评价对象→应用→获取方式→数据特征。
对于结构化存储的数据在应用层分为三类:基础数据、中间数据和结果数据,基础数据中包含用于类比的基础数据、用于统计分析的基础数据和直接用于公式运算的基础数据;结构化存储的数据在获取方式上可以继续划分,其中,用于公式运算的数据可以细化为专家直接录入、由地质类比获取、通过生产过程获取、通过地质研究过程获取及其他方式。中间数据可以从以下方式获取:标准、统计、类比、参数的关联。结果数据的获取有两种方式:公式运算结果和通过钻井、地质、综合研究等提交的文字报告。
对于非结构化存储的数据在应用层分为两类:图形数据和文档数据。
图形数据在获取方式上可以继续划分成四种方式:通过工程测量数据获取(如地理图件、井位坐标数据等)、通过地质研究过程获取(如沉积相图、构造区划图等)、由综合研究获取(如综合评价图等)、其他方式。
图形数据在表现方式上又可以进一步分为有坐标意义的图形(如构造单元划分图、地理图、井位图等)、数值图(如产烃率曲线图、酐洛根热降解图等)和无坐标含义图(如剖面图)等。
文档数据是指评价过程中产生的各种报告、项目运行记录等。
(二)数据库结构
从业务需求上,根据数据用途、数据类型和数据来源,可将本次的油气资源评价数据库分为三级:基础库、参数库、成果库(图4-12)。其结构如下:
图4-12 数据库结构示意图
1.基础库
基础库是油气资源评价工作的最基础的原始数据,有实测数据(物探数据、测井数据、钻井数据、开发数据等)、实验数据和经验数据等。
确定基础数据实际上是一项涉及油田勘探、开发等领域的多学科的复杂工作,是油气资源评价工作的研究过程和研究成果在数据库中的具体表现方式。在设计数据库的过程中,需要与参数研究专家经过多次反复,才能最终确定基础数据库,确保基础数据库能满足目前所有评价工作中计算的需要。
2.参数库
参数库用于存储油气资源评价工作所用到的参数数据,评价软件,直接从参数库中提取参数数据,用于计算。参数数据由基础数据汇总而来,也可以由专家根据经验直接得到。
本次评价中所涉及的参数大致可以分为以下几类:①直接应用的参数;②通过标准或类比借用的参数;③通过研究过程或复杂的预处理得到的参数。
3.成果库
成果库用于存储资源评价结果,包括各种计算结果、各种文档、电子表格、图片、图册等数据。
数据库的体系结构采用分布式多层数据库结构,包括三个组成部分:应用服务层、应用逻辑层和数据服务层。
数据库体系结构如图4-13所示。
图4-13 体系结构结构图
(1)应用服务层:应用服务层包含复杂的事务处理逻辑,应用服务层主要由中间件组件构成。中间件是位于上层应用和下层服务之间的一个软件层,提供更简单、可靠和增值服务。并且能够实现跨库检索的关键技术。它能够使应用软件相对独立于计算机硬件和 *** 作系统平台,把分散的数据库系统有机地组合在一起,为应用软件系统的集成提供技术基础,中间件具有标准程序接口和协议,可以实现不同硬件和 *** 作系统平台上的数据共享和应用互 *** 作。而在具体实现上,中间件是一个用API定义的分布式软件管理框架,具有潜在的通信能力和良好的可扩展性能。中间件包含系统功能处理逻辑,位于应用服务器端。它的任务是接受用户的请求,以特定的方式向应用服务器提出数据处理申请,通过执行相应的扩展应用程序与应用服务层进行连接,当得到应用服务器返回的处理结果后提交给应用服务器,再由应用服务器传送回客户端。根据国内各大石油公司具体的需求开发相应的地质、油藏、生产等应用软件功能程序模块和各种算法模块。
(2)应用逻辑层:逻辑数据层是扩展数据服务层逻辑处理层,针对当前的底层数据库的数据结构,根据具体的需求,应用各种数据库技术,包括临时表、视图、存储过程、游标、复制和快照等技术手段从底层数据库中提取相关的数据,构建面向具体应用的逻辑数据库或者形成一个虚拟的数据库平台。逻辑数据层包含底层数据库的部分或全部数据处理逻辑,并处理来自应用服务层的数据请求和访问,将处理结果返回给逻辑数据层。
形成一个虚拟的数据库平台我们可以应用数据库系统中的多个技术来实现。如果系统中的一个节点中的场地或分片数据能够满足当前虚拟数据库,可以在应用服务层中使用大量的查询,生成一个以数据集结果为主的虚拟数据库平台,并且由数据集附带部分数据库的管理应用策略。或者对节点上的数据库进行复制方法进行虚拟数据库的建立。对与需要对多个节点上的数据库进行综合筛选,则要对各个节点上的数据库进行复制,合并各个复制形成一个应用逻辑层,从而建立一个虚拟数据平台。
(3)数据服务层:即数据库服务器层,其中包含系统的数据处理逻辑,位于不同的 *** 作系统平台上,不同数据库平台(异构数据库),具体完成数据的存储、数据的完整性约束。也可以直接处理来自应用服务层的数据请求和访问,将处理结果返回给逻辑数据层或根据逻辑数据层通过提交的请求,返回数据信息和数据处理逻辑方法。
(三)数据建设标准
1.评价数据标准
系统数据库中的数据格式、大小、类型遵从国家及行业标准,参考的标准如表4-23。
表4-23 数据库设计参考标准
续表
系统中数据的格式及单位参考《常规油气资源评价实施方案》、《煤层气资源评价实施方案》、《油砂资源评价实施方案》、《油页岩资源评价实施方案》及数据字典。
2.图形图件标准
对于地质研究来说,地质类图件是比较重要的。各种地质评价图形遵循以下标准(表4-24)。
表4-24 系统图形遵循的相关标准
系统对图形的要求为必须为带有地理坐标意义的、满足上述标准体系要求的矢量图形,且采用统一的地理底图。图形格式采用:MapGIS图形交换格式、GeoInfo图形格式、ArcInfo图形交换格式、MapInfo图形交换格式和GeoMap图形交换格式。
图件的比例尺要求:
全国性图件:1∶400万或1:600万
大区图件:1:200万
盆地图件:1:40万或1:50万
评价单元图件:1:10万或1:20万
图件的内容要求符合《常规油气资源评价实施方案》、《煤层气资源评价实施方案》、《油砂资源评价实施方案》和《油页岩资源评价实施方案》的规定。
(四)数据内容
数据库中存储的数据包括常规油气相关数据、煤层气相关数据、油砂相关数据和油页岩相关数据;还有可采系数研究涉及的数据,包括研究所需基础数据和研究成果数据;以及趋势预测相关数据。
多维数据库(Multi Dimensional Database,MDD)可以简单地理解为:将数据存放在一个n维数组中,而不是像关系数据库那样以记录的形式存放。因此它存在大量稀疏矩阵,人们可以通过多维视图来观察数据。多维数据库增加了一个时间维,与关系数据库相比,它的优势在于可以提高数据处理速度,加快反应时间,提高查询效率。目前有两种MDD 的OLAP产品:基于多维数据库的MOLAP和基于关系数据库的ROLAP。ROLAP建立了一种新的体系,即星型结构。
MDD并没有公认的多维模型,也没有像关系模型那样标准地取得数据的方法(如SQL、API等)。基于MDD的OLAP产品,依据决策支持的内容使用范围也有很大的不同。
在低端,用户使用基于单用户或小型LAN的工具来观察多维数据。这些工具的功能性和实用性可能相当不错,但由于受到规模的限制,它们不具备OLAP的所有特性。这些工具使用超立方结构,将模型限制在n维形态。当模型足够大且稀疏数据没有控制好时,这种模型将会不堪一击。这些工具使用数据库的大小是以MB来计量的,而不是以GB计量的,因此只能进行只读 *** 作,且具备有限的复杂计算。
在高端,OLAP工具用4GL提供了完善的开发环境、统计分析、时间序列分析、财政报告、用户接口、多层体系结构、图表等许多其他功能。尽管不同的OLAP工具都使用了它们自己的多维数据库,但它们在不同程度上也利用了关系数据库作为存储媒体。因为关系数据库和OLAP工具同时在高端服务器上处理,所以速度和效率仍然很快。
纯多维数据库引擎也被开发出来。尽管这些工具缺乏4GL及充分的开发环境,但却有比高端MDD工具所使用的数据库更为复杂的数据库。这些工具也具有统计分析、财务分析和时间序列分析等功能,并有自己的API,允许其对前端的开发环境开放。
MDD能提供优良的查询性能。存储在MDD中的信息比在关系数据库中的信息具有更详细的索引,可以常驻内存。MDD的信息是以数组形式存放的,所以它可以在不影响索引的情况下更新数据。因此MDD非常适合于读写应用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)