大数据技术有哪些

大数据技术有哪些,第1张

数据技术,就是从各种类型的数据中快速获得有价值信息的技术。

大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

             

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术突破高速数据解析、转换与装载等大数据整合技术设计质量评估模型,开发数据质量技术。

       互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿

零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。

必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。

重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策 *** 作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

                  二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等 *** 作。

1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

                  三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。

主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术突破大数据索引技术突破大数据移动、备份、复制等技术开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。

其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。

关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术。

改进数据销毁、透明加解密、分布式访问控制、数据审计等技术突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

                  四、大数据分析及挖掘技术

大数据分析技术。

改进已有数据挖掘和机器学习技术开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术突破基于对象的数据连接、相似性连接等大数据融合技术突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。

根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。

统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。

神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。

数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

             

从挖掘任务和挖掘方法的角度,着重突破:

       1.可视化分析。

数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。

数据图像化可以让数据自己说话,让用户直观的感受到结果。

       2.数据挖掘算法。

图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。

分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。

这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。

      3.预测性分析。

预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。

      4.语义引擎。

语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。

      5.数据质量和数据管理。

数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

                         

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能、 *** 决策、公共服务。

例如:商业智能技术, *** 决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

本期目录

DB-Engines数据库排行榜

新闻快讯

一、RDBMS家族

二、NoSQL家族

三、NewSQL家族

四、时间序列

五、大数据生态圈

六、国产数据库概览

七、云数据库

八、推出dbaplus Newsletter的想法

九、感谢名单

为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录https://pan.baidu.com/s/13BgipbaHeMfvm0YPtiYviA

进行下载。

DB-Engines数据库排行榜

以下取自2019年1月的数据,具体信息可以参考http://db-engines.com/en/ranking/,数据仅供参考。

DB-Engines排名的数据依据5个不同的因素:

新闻快讯

1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。

2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。

3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。

4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。

5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。

今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。

6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:

7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。

8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。

RDBMS家族

Oracle 发布18.3版本

2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。

Oracle Database 18c及19c部分关键功能:

1、性能

2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性

3、高可用

4、数据仓库和大数据

MySQL发布8.0.13版本

1、账户管理

经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。

2、配置

Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。

3、字段默认值

BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。

4、优化器

1)Skip Scan

非前缀索引也可以用了。

之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 >40) 和(f1 = 2 AND f2 >40)的查询结果合并。

2)函数索引

之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。

5、SQL语法

GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能变化

1)设置用户变量,请使用SET语句

如下类型语句将要被废弃SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。

3)新增会话级临时表空间

在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。

4)在线切换Group Replication的状态

5)新增了group_replication_member_expel_timeout

之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。

group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update连表更新,limit语句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3

MySQL 8.0直接报错

MariaDB 10.3更新成功

2)update连表更新,ORDER BY and LIMIT语句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3

MySQL 8.0直接报错

MariaDB 10.3更新成功

参考:

https://jira.mariadb.org/browse/MDEV-13911

2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL

Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!

有以下两种情况执行DDL *** 作会锁表的,Waiting for table metadata lock(元数据表锁):

针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL *** 作快速失败。

例:

如果线上有某个慢SQL对该表进行 *** 作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。

参考:

https://jira.mariadb.org/browse/MDEV-11388

3、MariaDB Window Functions窗口函数分组取TOP N记录

窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。

参考:

https://mariadb.com/kb/en/library/window-functions-overview/

Percona Server发布8.0 GA版本

2018年12月21日,Percona发布了Percona Server 8.0 GA版本。

在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:

1、安全性和合规性

2、性能和可扩展性

3、可观察性和可用性

Percona Server for MySQL 8.0中将要被废用功能:

Percona Server for MySQL 8.0中删除的功能:

RocksDB发布V5.17.2版本

2018年10月24日,RocksDB发布V5.17.2版本。

RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。

PostgreSQL发布11版本

2018年10月18日,PostgreSQL 11发布。

1、PostgreSQL 11的重大增强

2、PostgreSQL 插件动态

1)分布式插件citus发布 8.1

citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。

https://github.com/citusdata/citus

2)地理信息插件postgis发布2.5.1

PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。

http://postgis.net/

3)时序插件timescale发布1.1.1

timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。

https://github.com/timescale/timescaledb

4)流计算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。

https://github.com/pipelinedb/pipelinedb

3、PostgreSQL衍生开源产品动态

1)agensgraph发布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。

https://github.com/bitnine-oss/agensgraph

2)gpdb发布5.15

gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。

https://github.com/greenplum-db/gpdb

3)antdb发布3.2

antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。

https://github.com/ADBSQL/AntDB

4)迁移工具MTK发布52版本

MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。

https://github.com/digoal/blog/blob/master/201812/20181226_01.md

DB2发布 11.1.4.4版本

DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:

1、性能

2、高可用

3、管理视图

4、应用开发方面

5、联邦功能

6、pureScale

NoSQL家族

Redis发布5.0.3版本

MongoDB升级更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。

MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。

MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。

本期新秀:Cassandra发布3.11.3版本

2018年8月11日,Cassandra发布正式版3.11.3。

Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。

Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。

3.11.3版本的一些bug fix和改进:

NewSQL家族

TiDB 发布2.1.2版本

2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。

TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。

TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB发布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式发布。

作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:

CockroachDB发布2.1版本

2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:

新增企业级特性:

新增SQL特性:

新增内核特性:

Admin UI增强:

时间序列

本期新秀:TimescaleDB发布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。

TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。

TimescaleDB架构:

数据自动按时间和空间分片(chunk)

更新亮点:

https://github.com/timescale/timescaledb/releases/tag/1.0.0

大数据生态圈

Hadoop发布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:

Greenplum 发布5.15版本

Greenplum最新的5.15版本中发布了流式数据加载工具。

该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:

国产数据库概览

K-DB发布数据库一体机版

2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:

OceanBase迁移服务发布1.0版本

1月4日,OceanBase 正式发布OMS迁移服务1.0版本。

以下内容包含 OceanBase 迁移服务的重要特性和功能:

SequoiaDB发布3.0.1新版本

1、架构

1)完整计算存储分离架构,兼容MySQL协议、语法

计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的d性伸缩。

SequoiaDB巨杉数据库“计算-存储分离”架构详细示意

用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。

2、其他更新信息

1)接口变更:

2)主要特性:

云数据库

本期新秀:腾讯发布数据库CynosDB,开启公测

1、News

1)腾讯云数据库MySQL2018年重大更新:

2)腾讯云数据库MongoDB2018年重大更新:

3)腾讯云数据库Redis/CKV+2018年重大更新:

4)腾讯云数据库CTSDB2018年重大更新:

2、Redis 4.0集群版商业化上线

2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。

产品特性:

使用场景:

官网文档:

https://cloud.tencent.com/document/product/239/18336

3、腾讯自研数据库CynosDB发布,开启公测

2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。

本期新秀:京东云DRDS发布1.0版本

12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。

DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,d性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。

京东云DRDS产品有以下主要特性

1)自动分库分表

通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。

2)分布式架构

基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。

3)超强性能

具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。

4)兼容MySQL

兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。

参考链接:

https://www.jdcloud.com/cn/products/drds

RadonDB发布1.0.3版本

2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。

我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。

至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn

感谢名单

最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。

往期回顾:

↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6776462.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-28
下一篇 2023-03-28

发表评论

登录后才能评论

评论列表(0条)

保存