数据库一致性(Database Consistency)是指事务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。保证数据库一致性是指当事务完成时,必须使所有数据都具有一致的状态。在关系型数据库中,所有的规则必须应用到事务的修改上,以便维护所有数据的完整性。
保证数据库的一致性是数据库管理系统的一项功能.比如有两个表(员工\职位),员工表中有员工代码、姓名、职位代码等属性,职位表中有职位代码、职位名称、职位等级等属性。你在其中员工表中进行了插入 *** 作,你插入了一个新员工的信息,而这个新员工的职位是公司新创建的一个职位。如果没有一致性的保证,就会出现有这么一个员工,但是不知道他到底担当什么职责!这个只是它的一个小小方面。
读一致性也是数据库一致性的一个重要方面,在实际中,我们会遇到这种情况:我们对一个表中的某些数据进行了更新 *** 作,,但是还没有进行提交,这时另外一个用户读取表中数据.这个时候就出现了读一致性的问题:到底是读什么时候的数据呢?是更新前的还是更新后的?在DBMS中设有临时表,它用来保存修改前的值,在没有进行提交前读取数据,会读取临时表中的数据,这样一来就保证了数据是一致的.(当前用户看到的是更新后的值)
但是还有一种情况:用户user1对表进行了更新 *** 作,用户user2在user1还没有进行提交前读表中数据,而且是大批量的读取(打个比方:耗时3分钟)而在这3分钟内user1进行了提交 *** 作,那又会产生什么影响呢?这个时候怎么保证读写一致性呢?这个时候DBMS就要保证有足够大的临时表来存放修改前的数值,以保证user2读取的数据是修改前的一致数据.然后下次再读取时候就是更新后的数据了。
同步更新。
简单说来就是一条column的数据在多个表中保持同步更新, 一般用foreign key实现mapping
比如两张表table1,table2
其中table1的uid column是primary key,table2的uid column是foreign key,
则当修改table1的uid column的一row时,table2的对应row也会自动更新。
扩展资料:
常用的一致性模型有:
1、严格一致性(linearizability, strict/atomic Consistency):读出的数据始终为最近写入的数据。这种一致性只有全局时钟存在时才有可能,在分布式网络环境不可能实现。
2、顺序一致性(sequential consistency):所有使用者以同样的顺序看到对同一数据的 *** 作,但是该顺序不一定是实时的,等。
参考资料来源:百度百科-数据库一致性
一致性(Consistent)(Consistency) 事务在完成时,必须使所有的数据都保持一致状态。在相关数据库中,所有规则都必须应用于事务的修改,以保持所有数据的完整性。事务结束时,所有的内部数据结构(如 B 树索引或双向链表)都必须是正确的。某些维护一致性的责任由应用程序开发人员承担,他们必须确保应用程序已强制所有已知的完整性约束。如,当开发用于转账的应用程序时,应避免在转账过程中任意移动小数点。隔离性(Insulation)(Isolation) 由并发事务所作的修改必须与任何其它并发事务所作的修改隔离。事务查看数据时数据所处的状态,要么是另一并发事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看中间状态的数据。这称为隔离性,因为它能够重新装载起始数据,并且重播一系列事务,以使数据结束时的状态与原始事务执行的状态相同。当事务可序列化时将获得最高的隔离级别。在此级别上,从一组可并行执行的事务获得的结果与通过连续运行每个事务所获得的结果相同。由于高度隔离会限制可并行执行的事务数,所以一些应用程序降低隔离级别以换取更大的吞吐量。持久性(Duration)(Durability) 事务完成之后,它对于系统的影响是永久性的。该修改即使出现致命的系统故障也将一直保持。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)