Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。
2、数据分析师
数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
1、首席数据官(CDO)
首席数据官的作业内容十分多,责任也很杂乱,他们担任公司的数据结构建立、数据办理、数据安全保证、商务智能办理、数据洞悉和高档剖析。因而,首席数据师有必要个人能力拔尖,一起还需求具有满足的领导力和远见,找准公司开展方针,和谐应变办理进程。
2、营销剖析师/客户关系办理剖析师
客户忠诚度项目、网络剖析和物联网技能积攒了许多的用户数据,许多先进公司现已在运用相关战略来支撑公司的开展计划。
尤其是商场部分可以运用这些数据进行更有针对性的营销。营销剖析师可以发挥他们在Excel和SQL等数据剖析东西方面的专业特长,对客户进行细分,保证数字化营销可以抵达方针客户集体。
3、数据工程师
跟着Hadoop和非结构化数据仓库的盛行,一切剖析功用的榜首要务就是要得到正确的数据。商务智能和数据科学都要求有洁净的、有序的且可用的数据结构,而这通常是经过SQL效劳器、甲骨文(Oracle)和SAP公司数据库来完成的。
高水平的工程师需求把握数据办理技能,了解提取转化加载进程,许多公司都急需这样的人才。事实上,许多首席数据官乃至以为,数据工程师才是大数据相关职业中最重要的职位。
4、商务智能开发工程师
商务智能开发工程师的最基本职能,是办理结构数据从数据库分配至终端用户的进程。商务智能(BI)从前仅仅商务金融的根底,现在现已独立出来,成为了独自的部分,许多商务智能团队正在建立自效劳指示板,这样运营司理就能快速且有效地获取高性能数据,点评公司运营状况。
5、数据科学家
优异的数据科学家可以运用先进的剖析原理和Python,R或Spark等数据编程东西来辨认并处理高度杂乱的事务问题。剖析将在决议计划中发挥核心作用,供给智力支撑,以保证公司可以在日益杂乱的商业环境中取得成功。
大数据专业的就业方向有:大数据系统研发工程师、大数据应用开发工程师、大数据分析师、数据可视化工程师、数据安全研发人才等方面。具体介绍如下:
1、大数据系统研发工程师:
这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。
大数据是未来的发展方向,正在挑战我们的分析能力及对世界的认知方式,因此,我们与时俱进,迎接变化,并不断的成长!
2、大数据应用开发工程师:
此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapReduce,他们研发各种基于大数据技术的应用程序及行业解决方案。
其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,末后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。
3、大数据分析师:
此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。
随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是很抢手的大数据人才,他们所从事的是热门的分析师工作。
4、数据可视化工程师:
此类人才负责在收集到的高质量数据中,利用图形化的工具及手段的应用,清楚地揭示数据中的复杂信息,帮助用户更好地进行大数据应用开发,如果能使用新型数据可视化工具如Spotifre,Qlikview和Tableau,那么,就成为很受欢迎的人才。
5、数据安全研发人才:
此类人才主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施,而对于数据安全方面的具体技术的人才就更需要了,如果数据安全技术,同时又具有较强的管理经验,能有效地确保大数据构设和应用单位的数据安全,那就是抢手的人才。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)