时间序列数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生的数据。这些工业数据的典型特点是:产生频率快、严重依赖于采集时间、测点多信息量大。
Transwarp TimeLyre 是星环科技研发的企业级分布式时序数据库,可以支撑时序数据的各类业务场景, 支持高吞吐实时写入、时序精确查询、多维检索等。 Timelyre 支持分布式水平扩展,同时具有极高的压缩率可以支持海量时序数据的存储,可以有效支撑物 联网、能源制造、金融量化交易领域等多种时序数据业务场景。
使用R语言进行时间序列(arima,指数平滑)分析 - 拓端研究室TRL...2022年11月23日您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scanR语言实战之时间序列分析
萌弟
生活就像马尔可夫链,决定未来的只有现在,过去的终将埋葬。
来自专栏R语言实战学习
前面的线性回归探讨的是横截面(cross-sectional)数据。在横截面数据集中,我们是在一个给定的时间点测量变量值。与之相反,纵向(longitudinal)数据则是随着时间的变化反复测量变量值。若持续跟踪某一现象,可能会获得很多了解。 对时序数据的研究包括两个基本问题: 对数据的描述 (这段时间内发生了什么)以及预测(接下来将会发生什么) 。我们可能有如下疑问。
Johnson &Johnson股价在这段时间内有变化吗?
数据会受到季度影响吗?股价是不是存在某种固定的季度变化?
我们可以预测未来的股价吗?如果可以的话,准确率有多高?
描述时序数据和预测未来值的方法有很多,而R软件具备很多其他软件都不具备的精细时序分析工具。
将分析的几个时序数据集,这些数据集在R中都可以找到,它们各有特点,适用的模型也各不相同。
本文首先介绍生成、 *** 作时序数据的方法,对它们进行描述并画图,将它们分解成水平、趋势、季节性和随机(误差)等四个不同部分。在此基础上,我们采用不同的统计模型对其进行预测。将要介绍的方法包括基于加权平均的指数模型,以及基于附近数据点和预测误差间关联的自回归积分移动平均(ARIMA)模型。我们还将介绍模型拟合和预测准确性的评价指标。
本章内容:
在 R 中生成时序对象
时序的平滑化和季节性分解
序数据库英文全称为Time Series Database,简称TSDB,是以时间为索引的规律性时间间隔记录的数据库。时序数据库采用特殊数据存储方式,极大提高了时间相关数据的处理能力,相对于关系型数据库它的存储空间减半,查询速度极大的提高。一、时序数据库是什么
时序数据库全称为时间序列数据库。时间序列数据库指主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据,带时间标签的数据也称为时间序列数据。
时间序列数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生的数据,这些工业数据的典型特点是:产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。
二、时序数据库的特点
1、有效处理庞大数据。
2、对重复的部分,Informix TimeSeries只保持一份数据。
3、节省空间50%,有效降低I/O。
4、主键索引更有效。
5、时间序列表头分离的特性不浪费空间。
三、时序数据库和关系型数据库的区别
1、数据压缩情况
关系型数据库将它们的数据按行存储在磁盘上,不同的数据类型彼此相邻,这限制了可以使用什么类型的压缩算法以及可以压缩多少数据。
而时序数据库通常以相同类型的数据点彼此相邻的方式存储数据,这样的话可以使用最佳压缩算法,大大节省了存储成本。
2、数据库架构
关系型数据库底层是定义好模式的,所以对于表本身,不管是修改还是删除某一列,都会影响到数据库的模式,在底层相当于要进行”数据库迁移“。
而时序数据库往往是无模式的,允许快速轻松地添加新字段。
3、可用性和冗余
关系型数据库可以通过集群存储的方式提供高可用性,但它们容易受到网络可用性的影响,如果连接断开,数据收集将停止。
而时序数据库通过收集器的冗余可以确保良好的可用性,时序数据库一般带有存储转发技术,如果发生中断,该技术会在收集器处缓冲数据,当服务器自动重连时,缓冲区最终会同步上传,确保不会丢失数据。
4、数据安全
数据库被黑客和病毒攻击的事件频繁发生,中q的大多数是知名的关系数据库,常见的攻击比如有:SQL注入。
而时序数据库一般不允许通过标准接口插入、更新或删除数据,此外,时序数据库会跟踪所有更改,包括使用访问、配置、安全违规和系统警报。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)