MongoDB挑战传统数据库:非结构化数据库的迭新不容小觑

MongoDB挑战传统数据库:非结构化数据库的迭新不容小觑,第1张

相比甲骨文中国在中国市场的裁员风波,同为数据服务的MongoDB显得更为乐观。“MongoDB是中国开发者最喜欢用的一个数据库。”MongoDB全球渠道及亚太区销售高级副总裁Alan Chhabra带着一点自信和骄傲在媒体面前宣称。

中国企业的数字化转型正进入关键期,在打造开放、高效、灵活、共享的云计算基础设施的同时,数据库的更新换代也被提上了日程。

日前,非结构化数据库平台提供商MongoDB在上海举办用户大会,MongoDB全球渠道及亚太区销售高级副总裁Alan Chhabra接受了亿欧企业服务频道的采访, 并针对去年修改开源协议,在SSPL的不同许可机制下授权服务器软件的争议以及其他疑问作出回应。

数据库的本质是解决数据的存储和管理问题。 Alan Chhabra表示,对企业发展具有战略意义的数据库正在催生巨大的市场。

在这些潜力颇大的数据库中,市场上目前存在着的是关系型的传统数据库和以Mongo DB为代表的非关联式新型数据库。传统数据库比较典型的是甲骨文旗下的Oracle数据库、IBM推出的大数据平台Hadoop和Stream Computing、微软的SQL Server、SAP以及EMC Greenplum。 他们的主要差别在于数据库的结构化和非结构化。

结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据,存储和排列很有规律,这对查询和修改等 *** 作很有帮助,但扩展性和灵活性欠佳。 非结构化数据库就是各种文档、图片、视频/音频等没有固定结构的数据,一般直接整体进行存储为二进制的数据格式。 目前涵盖分布式数据库、图数据库、流数据库、时空数据库和众包数据库等多个领域。

MongoDB是文档型的非结构化新型数据库,Alan Chhabra表示, 与传统数据库相比,更能满足用户数据存储量大、计算灵活的需求。“在某些客户某些案例上,我们已经取代了传统数据库,比如甲骨文。”

当前, 软件对于商业模式的改变、开发人员地位的提高,以及企业向云端迁移的趋势 都让数据服务公司的发展得到了助力。但从毕马威会计事务所对首席信息官的调查结果来看, 88%的首席信息官认为他们未能从数字化战略中充分获益;82%的首席信息官认为其所在机构在利用技术推动业务发展方面并非“卓有成效”。 也就是说, 大多数公司的数字化战略是以失败告终的。

在此背景下,更加灵活、性能更加强大的新型数据库在一些领域获得了试验田丰收,并且可以看到,随着客户数据需求的繁杂程度的日益增加,传统数据库也在自我革新,以迎头赶上数据浪潮的大变革。

MongoDB成立于2007年,2017年在纳斯达克上市。最初,MongoDB是一项面向技术爱好者的技术,如今已成为一项企业级的业务关键技术。通过不断开发数据库即服务(Database-as-a-Service)产品,积极拥抱云计算,MongoDB在过去十年里,为开发人员提供了处理数据的方法。正因如此,它也成了企业数字化转型战略的一个关键部分。

MongoDB提供的产品主要包括MongoDB云服务MongoDB Atlas、MongoDB Mobile、MongoDB企业版和MongoDB Stitch等十余个相关产品。Alan Chhabra表示,产品包括了 开源版、付费版和云版。

2018 年 10 月,MongoDB宣布其开源许可证将从GNU AGPLv3切换到SSPL,新许可证将适用于新版本的MongoDB Community Server以及打过补丁的旧版本,这一举动引发了行业热议。基于GNU AGPLv3协议,企业可以将MongoDB作为公共服务但这需要企业开源自己的软件或是获得MongoDB的商业授权,事实却是MongoDB发现许多企业正在违反协议“疯狂试探”甚至已经违反协议。 SSPL( Server Side Public License)顾名思义,要求使用者必须得到服务器端公共许可证,这一协议会进一步约束商业公司使用MongoDB服务。

Alan Chhabra向亿欧解释, SSPL 针对的是提供MongoDB托管服务的云服务厂商。 也就是说,如果不是云服务厂商,没有公然售卖MongoDB产品,而只是作为应用后台数据库来使用的话,那么无论你是电商、物联网、金融、社交、 游戏 、移动应用等等,一概都不会有任何影响。 “MongoDB的宗旨还是为了始终支持并保护创新开放。”

但此开源协议的修改明显带来了市场用户的“掉粉”,比如Linux 社区的接连“弃用”,以及AWS 、IBM、微软推出了兼容MongoDB的相关产品来服务用户。

数据库开源的商业变现与创新形成的矛盾,目前似乎还尚未找到解决方案。

Alan Chhabra在大会上也透露了MongoDB的未来计划, 即将基于智能运营数据平台和下一代基础架构、文化、方法论和安全,推动原有系统的现代化、数据即服务、云数据策略、业务敏捷性,进而帮助客户实现以数据驱动的数字化转型。

针对MongoDB在中国的发展情况, Alan Chhabra表示,公司将以创新立足,持续引领数据库技术发展潮流,与合作伙伴携手助力中国企业的数字化转型。

MongoDB北亚区副总裁苏玉龙认为:“中国是数据大国,而数据就是未来的石油。如何利用好数据,让数据石油助力中国企业腾飞是MongoDB希望在中国达成的事情。随着中国企业数字化转型逐渐走向深入,MongoDB数据库的价值得到不断释放。”

本文作者龚晨霞,微信Gcx847076575,欢迎关注企业服务和产业互联网的朋友加微信交流。

最近在回顾mongodb的相关知识,输出一篇文章做为MongoDB知识点的总结。

总结的目的在于回顾MongoDB的相关知识点,明确MongoDB在企业级应用中充当的角色,为之后的技术选型提供一个可查阅的信息简报。

MongoDB是一款为web应用程序和互联网基础设施设计的数据库管理系统。没错MongoDB就是数据库,是NoSQL类型的数据库

(1)MongoDB提出的是文档、集合的概念,使用BSON(类JSON)作为其数据模型结构,其结构是面向对象的而不是二维表,存储一个用户在MongoDB中是这样子的。

使用这样的数据模型,使得MongoDB能在生产环境中提供高读写的能力,吞吐量较于mysql等SQL数据库大大增强。

(2)易伸缩,自动故障转移。易伸缩指的是提供了分片能力,能对数据集进行分片,数据的存储压力分摊给多台服务器。自动故障转移是副本集的概念,MongoDB能检测主节点是否存活,当失活时能自动提升从节点为主节点,达到故障转移。

(3)数据模型因为是面向对象的,所以可以表示丰富的、有层级的数据结构,比如博客系统中能把“评论”直接怼到“文章“的文档中,而不必像myqsl一样创建三张表来描述这样的关系。

SQL类型的数据库是正规化的,可以通过主键或者外键的约束保证数据的完整性与唯一性,所以SQL类型的数据库常用于对数据完整性较高的系统。MongoDB在这一方面是不如SQL类型的数据库,且MongoDB没有固定的Schema,正因为MongoDB少了一些这样的约束条件,可以让数据的存储数据结构更灵活,存储速度更加快。

MongoDB保留了关系型数据库即时查询的能力,保留了索引(底层是基于B tree)的能力。这一点汲取了关系型数据库的优点,相比于同类型的NoSQL redis 并没有上述的能力。

MongoDB自身提供了副本集能将数据分布在多台机器上实现冗余,目的是可以提供自动故障转移、扩展读能力。

MongoDB的驱动实现一个写入语义 fire and forget ,即通过驱动调用写入时,可以立即得到返回得到成功的结果(即使是报错),这样让写入的速度更加快,当然会有一定的不安全性,完全依赖网络。

MongoDB提供了Journaling日志的概念,实际上像mysql的bin-log日志,当需要插入的时候会先往日志里面写入记录,再完成实际的数据 *** 作,这样如果出现停电,进程突然中断的情况,可以保障数据不会错误,可以通过修复功能读取Journaling日志进行修复。

MongoDB使用分片技术对数据进行扩展,MongoDB能自动分片、自动转移分片里面的数据块,让每一个服务器里面存储的数据都是一样大小。

MongoDB核心服务器主要是通过mongod程序启动的,而且在启动时不需对MongoDB使用的内存进行配置,因为其设计哲学是内存管理最好是交给 *** 作系统,缺少内存配置是MongoDB的设计亮点,另外,还可通过mongos路由服务器使用分片功能。

MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包,方便各种语言的接入。

mongodump和mongorestore,备份和恢复数据库的标准工具。输出BSON格式,迁移数据库。

mongoexport和mongoimport,用来导入导出JSON、CSV和TSV数据,数据需要支持多格式时有用。mongoimport还能用与大数据集的初始导入,但是在导入前顺便还要注意一下,为了能充分利用好mongoDB通常需要对数据模型做一些调整。

mongosniff,网络嗅探工具,用来观察发送到数据库的 *** 作。基本就是把网络上传输的BSON转换为易于人们阅读的shell语句。

因此,可以总结得到,MongoDB结合键值存储和关系数据库的最好特性。因为简单,所以数据极快,而且相对容易伸缩还提供复杂查询机制的数据库。MongoDB需要跑在64位的服务器上面,且最好单独部署,因为是数据库,所以也需要对其进行热备、冷备处理。

因为本篇文章不是API手册,所有这里对shell的使用也是基础的介绍什么功能可以用什么语句,主要是为了展示使用MongoDB shell的方便性,如果需要知道具体的MongoDB shell语法可以查阅官方文档。

创建数据库并不是必须的 *** 作,数据库与集合只有在第一次插入文档时才会被创建,与对数据的动态处理方式是一致的。简化并加速开发过程,而且有利于动态分配命名空间。如果担心数据库或集合被意外创建,可以开启严格模式

以上的命令只是简单实例,假设如果你之前没有学习过任何数据库语法,同时开始学sql查询语法和MongoDB 查询语法,你会发现哪一个更简单呢?如果你使用的是java驱动去 *** 作MongoDB,你会发现任何的查询都像Hibernate提供出来的查询方式一样,只要构建好一个查询条件对象,便能轻松查询(接下来会给出示例),博主之前熟悉ES6,所以入手MongoDB js shell完成没问题,也正因为这样简洁,完善的查询机制,深深的爱上了MongoDB。

这里引用的是最新的驱动包,提供了一套新的访问连接方式

这里只举例了简单的链接与简单的MongoDB *** 作,可见其 *** 作的容易性。使用驱动时是基于TCP套接字与MongoDB进行通信的,如果查询结果较多,恰好无法全部放进第一服务器中,将会向服务器发送一个getmore指令获取下一批查询结果。

插入数据到服务器时间,不会等待服务器的响应,驱动会假设写入是成功的,实际是使用客户端生成对象id,但是该行为可以通过配置配置,可以通过安全模式开启,安全模式可以校验服务器端插入的错误。

MongoDB是一个面向文档的数据库,属于NoSQL数据库,它使用类似JSON的文档和schemata。

MongoDB的默认接口是(CLI)命令行,新用户很难像专业人员那样处理数据库。因此,有一些MongoDB管理工具来提供GUI界面以提高生产力。就像phpmyadmin为MySQL/MariaDB数据库提供基于HTTP网络的GUI界面一样。但是,此处包含的所有工具都不是基于HTTP的,只有少数工具为MongoDB提供Web界面。以下是使用GUI的比较流行的MongoDB管理工具列表:

要从具有图形用户界面的MongoDB开始,MongoDB是最好的方法之一。MongoDB Compass Community由MongoDB开发人员开发,这意味着更高的可靠性和兼容性。它为MongoDB提供GUI mongodb工具,以 探索 数据库交互;具有完整的CRUD功能并提供可视方式。借助内置模式可视化,用户可以分析文档并显示丰富的结构。为了监控服务器的负载,它提供了数据库 *** 作的实时统计信息。就像MongoDB一样,Compass也有两个版本,一个是Enterprise(付费),社区可以免费使用。适用于Linux,Mac或Windows。

NoSQLBooster是MongoDB CLI界面中非常流行的GUI工具。它正式名称为MongoBooster。NoSQLBooster是一个跨平台,它带有一堆mongodb工具来管理数据库和监控服务器。这个Mongodb工具包括服务器监控工具,Visual Explain Plan,查询构建器,SQL查询,ES2017语法支持等等......它有免费,个人和商业版本,当然,免费版本有一些功能限制。NoSQLBooster也可用于Windows,MacOS和Linux。

ClusterControl是另一个MongoDB工具,具有管理数据库基础结构的GUI。它还有两个版本 - 社区和企业版。不用说,ClusterControl社区版可以免费使用,而企业则是付费的。它不仅限于MongoDB,还支持MySQL,MySQL复制,MySQL NDB集群,Galera集群,MariaDB,PostgreSQL,TimescaleDB,Docker和ProxySQL。

ClusterControl为数据库基础架构提供全自动安全性,该基础架构具有单个图形用户界面,可 *** 作和自动化MongoDB和MySQL数据库环境。它可通过YUM/APT提供回购,适用于Linux平台(RedHat,Centos,Ubuntu或Debian)。

Nosqlclient是一个免费的开源MongoDB管理工具,基于Web的GUI意味着不再需要命令行来管理数据库。我们可以使用Nosqlclient在MongoDB中插入,删除或更新数据,而无需使用查询。它可作为桌面应用程序,Docker和Web应用程序使用。Web使用HTTP为MOngoDB提供基于浏览器的界面。

Robo 3T由MongoDB客户端Studio 3T的开发人员维护和提供。以前,Robo 3T被称为Robomongo。它也是适用于Windows,MacOS和Linux的跨平台MongoDB GUI管理工具。它具有相同的引擎和环境,是MongoDB shell(3.2)的一部分。

上面提到的Robomong被3T收购并更名为Robot 3T;现在是Studio 3T的一部分。那么,Studio 3T是什么?与其他提到的MongoDB管理GUI工具一样,Studio 3T也是一个基于GUI的工具,用于管理数据库,但在付费类别中。但是,此工具的30天免费试用版允许用户在投入资金之前使用并了解其功能。与免费和开源Robot 3T相比,Studio 3T具有更多功能并提供企业支持。与Robo 3T相同,它也适用于Windows,Linux(Ubuntu和CentOS)和MacOS。

Mongo Management Studio是一个用于数据库管理的免费MongoDB GUI工具。它轻巧,界面清晰,易于开发基于MongoDB的项目。它使用nodeJs,Electron框架,MongoDB和AngularJs开发。MMS与MongoDB 3.0/3.2/3.4兼容。

与上述所有MongoDB管理工具一样,用户可以轻松安装它,但免费版仅适用于Windows;而企业和个人则适用于Linux,Windows和MacOS。企业版(Web服务器)支持MongoDB Web界面HTTP GUI,这意味着我们可以在主服务器上安装,之后可以在本地或远程使用浏览器的任何系统上访问。但是,个人版和免费版只能在已安装它们的本地系统上使用。

它是面向关系,NoSQL和云平台的数据库开发人员的通用集成开发环境(IDE)。因此,支持各种数据库来开发,访问,管理和可视化分析数据。

对于MongoDB,Aqua Data Studio使用具有管理和数据库查询功能的图形用户界面作为管理工具。Aqua Data studio的Visual界面允许用户浏览和修改数据库结构,包括模式对象和集合,以及维护数据库安全性。

它提供了一个MongoDB数据库工具包,包括各种工具,如Visual Analytics,MongoSQL查询参考,MongoJS查询分析器,MongoShell MongoShell,FluidShell,查询和分析工具,网格和数据透视图,表数据编辑器,导入和导出工具,实体关系建模;Visual Query Builder;比较工具:架构比较,文件比较;SQL 历史 记录,Open API脚本环境,集成安全Shell(SSH)和版本控制:Subversion(SVN),Git,CVS,Perforce。

MongoJS查询分析器Javascript编辑器允许执行JavaScript命令并支持自动完成和语法突出显示。结果可以在树层次结构,网格结果和文本中看到。

作为付费产品,Aqua Data Studio的试用版提供14天,具有所有企业功能。所以,如果你正在寻找一些付费产品,那么你可以在花钱之前免费试用它。它适用于Windows,Linux和MacOS。

这听起来像phpMyAdmin工具。但是,phpMoAdmin也是PHP编写的但是可用于MongoDB。它基于Vork PHP框架。很轻巧,易于安装。它只有115KB的moadmin.php文件,用户可以放在网站的任何地方开始工作。

它是一个跨平台的MongoDB管理工具,在Open Source许可下发布,使用Electron框架和Angular JS构建。可在GitHub上找到。

以上谈到了Windows,Linux和MacOS MongoDB管理客户端,所以那些正在寻找智能手机和平板电脑的用户mongoDB管理可以试试Mongolime。它为MongoDB移动客户端提供了轻松连接和访问MongoDB服务器的功能。它具有内置的SSH隧道,可以通过SSL轻松验证和连接远程服务器。MongoLime是免费增值MongoDB客户端应用程序,支持iOS和Android平台。

使用Node.js,Express和Bootstrap3编写的基于Web的MongoDB管理界面。它允许连接多个数据库;查看/添加/删除数据库,集合和文档;预览音频/视频/图像资产;GridFS支持 - 添加/获取/删除难以置信的大文件;在文档中使用BSON数据类型,Mobile / Responsive - Bootstrap以及更多功能。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6839720.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-29
下一篇 2023-03-29

发表评论

登录后才能评论

评论列表(0条)

保存