trans1trans2
------------------------------------------------------------------------
1.IDBConnection.BeginTransaction 1.IDBConnection.BeginTransaction
2.update table A2.update table B
3.update table B3.update table A
4.IDBConnection.Commit4.IDBConnection.Commit
那么,很容易看到,如果trans1和trans2,分别到达了step3,那么trans1会请求对于B的X锁,trans2会请求对于A的X锁,而二者的锁在step2上已经被对方分别持有了。由于得不到锁,后面的Commit无法执行,这样双方开始死锁。
好,我们看一个简单的例子,来解释一下,应该如何解决死锁问题。
-- Batch #1
CREATE DATABASE deadlocktest
GO
USE deadlocktest
SET NOCOUNT ON
DBCC TRACEON (1222, -1)
-- 在SQL2005中,增加了一个新的dbcc参数,就是1222,原来在2000下,我们知道,可以执行dbcc
--traceon(1204,3605,-1)看到所有的死锁信息。SqlServer 2005中,对于1204进行了增强,这就是1222。
GO
IF OBJECT_ID ('t1') IS NOT NULL DROP TABLE t1
IF OBJECT_ID ('p1') IS NOT NULL DROP PROC p1
IF OBJECT_ID ('p2') IS NOT NULL DROP PROC p2
GO
CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 char(5000))
GO
DECLARE @x int
SET @x = 1
WHILE (@x <= 1000) BEGIN
INSERT INTO t1 VALUES (@x*2, @x*2, @x*2, @x*2)
SET @x = @x + 1
END
GO
CREATE CLUSTERED INDEX cidx ON t1 (c1)
CREATE NONCLUSTERED INDEX idx1 ON t1 (c2)
GO
CREATE PROC p1 @p1 int AS SELECT c2, c3 FROM t1 WHERE c2 BETWEEN @p1 AND @p1+1
GO
CREATE PROC p2 @p1 int AS
UPDATE t1 SET c2 = c2+1 WHERE c1 = @p1
UPDATE t1 SET c2 = c2-1 WHERE c1 = @p1
GO
上述sql创建一个deadlock的示范数据库,插入了1000条数据,并在表t1上建立了c1列的聚集索引,和c2列的非聚集索引。另外创建了两个sp,分别是从t1中select数据和update数据。
好,打开一个新的查询窗口,我们开始执行下面的query:
-- Batch #2
USE deadlocktest
SET NOCOUNT ON
WHILE (1=1) EXEC p2 4
GO
开始执行后,然后我们打开第三个查询窗口,执行下面的query:
-- Batch #3
USE deadlocktest
SET NOCOUNT ON
CREATE TABLE #t1 (c2 int, c3 int)
GO
WHILE (1=1) BEGIN
INSERT INTO #t1 EXEC p1 4
TRUNCATE TABLE #t1
END
GO
开始执行,哈哈,很快,我们看到了这样的错误信息:
Msg 1205, Level 13, State 51, Procedure p1, Line 4
Transaction (Process ID 54) was deadlocked on lock resources with another process and has been chosen as the deadlock victim. Rerun the transaction.
spid54发现了死锁。
那么,我们该如何解决它?
在SqlServer 2005中,我们可以这么做:
1.在trans3的窗口中,选择EXEC p1 4,然后right click,看到了菜单了吗?选择Analyse Query in Database Engine Tuning Advisor。
2.注意右面的窗口中,wordload有三个选择:负载文件、表、查询语句,因为我们选择了查询语句的方式,所以就不需要修改这个radio option了。
3.点左上角的Start Analysis按钮
4.抽根烟,回来后看结果吧!出现了一个分析结果窗口,其中,在Index Recommendations中,我们发现了一条信息:大意是,在表t1上增加一个非聚集索引索引:t2+t1。
5.在当前窗口的上方菜单上,选择Action菜单,选择Apply Recommendations,系统会自动创建这个索引。
重新运行batch #3,呵呵,死锁没有了。
这种方式,我们可以解决大部分的Sql Server死锁问题。那么,发生这个死锁的根本原因是什么呢?为什么增加一个non clustered index,问题就解决了呢? 这次,我们分析一下,为什么会死锁呢?再回顾一下两个sp的写法:
CREATE PROC p1 @p1 int AS
SELECT c2, c3 FROM t1 WHERE c2 BETWEEN @p1 AND @p1+1
GO
CREATE PROC p2 @p1 int AS
UPDATE t1 SET c2 = c2+1 WHERE c1 = @p1
UPDATE t1 SET c2 = c2-1 WHERE c1 = @p1
GO
很奇怪吧!p1没有insert,没有delete,没有update,只是一个select,p2才是update。这个和我们前面说过的,trans1里面updata A,update B;trans2里面upate B,update A,根本不贴边啊!
那么,什么导致了死锁?
需要从事件日志中,看sql的死锁信息:
Spid X is running this query (line 2 of proc [p1], inputbuffer “… EXEC p1 4 …”):
SELECT c2, c3 FROM t1 WHERE c2 BETWEEN @p1 AND @p1+1
Spid Y is running this query (line 2 of proc [p2], inputbuffer “EXEC p2 4”):
UPDATE t1 SET c2 = c2+1 WHERE c1 = @p1
The SELECT is waiting for a Shared KEY lock on index t1.cidx. The UPDATE holds a conflicting X lock.
The UPDATE is waiting for an eXclusive KEY lock on index t1.idx1. The SELECT holds a conflicting S lock.
首先,我们看看p1的执行计划。怎么看呢?可以执行set statistics profile on,这句就可以了。下面是p1的执行计划
SELECT c2, c3 FROM t1 WHERE c2 BETWEEN @p1 AND @p1+1
|--Nested Loops(Inner Join, OUTER REFERENCES:([Uniq1002], [t1].[c1]))
|--Index Seek(OBJECT:([t1].[idx1]), SEEK:([t1].[c2] >= [@p1] AND [t1].[c2] <= [@p1]+(1)) ORDERED FORWARD)
|--Clustered Index Seek(OBJECT:([t1].[cidx]), SEEK:([t1].[c1]=[t1].[c1] AND [Uniq1002]=[Uniq1002]) LOOKUP ORDERED FORWARD)
我们看到了一个nested loops,第一行,利用索引t1.c2来进行seek,seek出来的那个rowid,在第二行中,用来通过聚集索引来查找整行的数据。这是什么?就是bookmark lookup啊!为什么?因为我们需要的c2、c3不能完全的被索引t1.c1带出来,所以需要书签查找。
好,我们接着看p2的执行计划。
UPDATE t1 SET c2 = c2+1 WHERE c1 = @p1
|--Clustered Index Update(OBJECT:([t1].[cidx]), OBJECT:([t1].[idx1]), SET:([t1].[c2] = [Expr1004]))
|--Compute Scalar(DEFINE:([Expr1013]=[Expr1013]))
|--Compute Scalar(DEFINE:([Expr1004]=[t1].[c2]+(1), [Expr1013]=CASE WHEN CASE WHEN ...
|--Top(ROWCOUNT est 0)
|--Clustered Index Seek(OBJECT:([t1].[cidx]), SEEK:([t1].[c1]=[@p1]) ORDERED FORWARD)
通过聚集索引的seek找到了一行,然后开始更新。这里注意的是,update的时候,它会申请一个针对clustered index的X锁的。
实际上到这里,我们就明白了为什么update会对select产生死锁。update的时候,会申请一个针对clustered index的X锁,这样就阻塞住了(注意,不是死锁!)select里面最后的那个clustered index seek。死锁的另一半在哪里呢?注意我们的select语句,c2存在于索引idx1中,c1是一个聚集索引cidx。问题就在这里!我们在p2中更新了c2这个值,所以sqlserver会自动更新包含c2列的非聚集索引:idx1。而idx1在哪里?就在我们刚才的select语句中。而对这个索引列的更改,意味着索引集合的某个行或者某些行,需要重新排列,而重新排列,需要一个X锁。
SO………,问题就这样被发现了。
总结一下,就是说,某个query使用非聚集索引来select数据,那么它会在非聚集索引上持有一个S锁。当有一些select的列不在该索引上,它需要根据rowid找到对应的聚集索引的那行,然后找到其他数据。而此时,第二个的查询中,update正在聚集索引上忙乎:定位、加锁、修改等。但因为正在修改的某个列,是另外一个非聚集索引的某个列,所以此时,它需要同时更改那个非聚集索引的信息,这就需要在那个非聚集索引上,加第二个X锁。select开始等待update的X锁,update开始等待select的S锁,死锁,就这样发生鸟。
那么,为什么我们增加了一个非聚集索引,死锁就消失鸟?我们看一下,按照上文中自动增加的索引之后的执行计划:
SELECT c2, c3 FROM t1 WHERE c2 BETWEEN @p1 AND @p1+1
|--Index Seek(OBJECT:([deadlocktest].[dbo].[t1].[_dta_index_t1_7_2073058421__K2_K1_3]), SEEK:([deadlocktest].[dbo].[t1].[c2] >= [@p1] AND [deadlocktest].[dbo].[t1].[c2] <= [@p1]+(1)) ORDERED FORWARD)
哦,对于clustered index的需求没有了,因为增加的覆盖索引已经足够把所有的信息都select出来。就这么简单。
实际上,在sqlserver 2005中,如果用profiler来抓eventid:1222,那么会出现一个死锁的图,很直观的说。
下面的方法,有助于将死锁减至最少(详细情况,请看SQLServer联机帮助,搜索:将死锁减至最少即可。
按同一顺序访问对象。
避免事务中的用户交互。
保持事务简短并处于一个批处理中。
使用较低的隔离级别。
使用基于行版本控制的隔离级别。
将 READ_COMMITTED_SNAPSHOT 数据库选项设置为 ON,使得已提交读事务使用行版本控制。
使用快照隔离。
使用绑定连接。
mysql数据库死锁解决方法如下:1、对于按钮等控件,点击后使其立刻失效,不让用户重复点击,避免对同时对同一条记录 *** 作。
2、使用乐观锁进行控制。乐观锁大多是基于数据版本(Version)记录机制实现。即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是 通过为数据库表增加一个“version”字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数 据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。乐观锁机制避免了长事务中的数据 库加锁开销(用户A和用户B *** 作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系统整体性能表现。Hibernate 在其数据访问引擎中内置了乐观锁实现。需要注意的是,由于乐观锁机制是在系统中实现,来自外部系统的用户更新 *** 作不受系统的控制,因此可能会造 成脏数据被更新到数据库中。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)