将Elasticsearch和MySQL结合使用可以实现更好的搜索和分析功能。比如,可以将MySQL中的结构化数据导入到Elasticsearch中建立索引,从而实现更快速、更准确的搜索和分析。同时,Elasticsearch也可以将搜索结果与MySQL中的结构化数据进行关联,从而提供更丰富的搜索结果和分析报告。
此外,Elasticsearch还可以作为MySQL的缓存层,用于加速访问和查询速度。将经常查询的数据存储在Elasticsearch中,可以大大减少MySQL的查询负载,提高系统性能和响应速度。
总之,结合使用Elasticsearch和MySQL可以充分发挥它们各自的优势,实现更好的搜索和分析功能,同时提高系统性能和响应速度。
Elasticsearch 是一个实时的分布式搜索与分析引擎,在使用过程中,有一些典型的使用场景,比如分页、遍历等。
在使用关系型数据库中,我们被告知要注意甚至被明确禁止使用深度分页,同理,在 Elasticsearch 中,也应该尽量避免使用深度分页。
这篇文章主要介绍 Elasticsearch 中分页相关内容!
在ES中,分页查询默认返回最顶端的10条匹配hits。
如果需要分页,需要使用from和size参数。
一个基本的ES查询语句是这样的:
上面的查询表示从搜索结果中取第100条开始的10条数据。
「那么,这个查询语句在ES集群内部是怎么执行的呢?」
在ES中,搜索一般包括两个阶段,query 和 fetch 阶段,可以简单的理解,query 阶段确定要取哪些doc,fetch 阶段取出具体的 doc。
如上图所示,描述了一次搜索请求的 query 阶段:·
在上面的例子中,coordinating node 拿到 (from + size) * 6 条数据,然后合并并排序后选择前面的 from + size 条数据存到优先级队列,以便 fetch 阶段使用。
另外,各个分片返回给 coordinating node 的数据用于选出前 from + size 条数据,所以,只需要返回唯一标记 doc 的 _id 以及用于排序的 _score 即可,这样也可以保证返回的数据量足够小。
coordinating node 计算好自己的优先级队列后,query 阶段结束,进入 fetch 阶段。
query 阶段知道了要取哪些数据,但是并没有取具体的数据,这就是 fetch 阶段要做的。
上图展示了 fetch 过程:
coordinating node 的优先级队列里有 from + size 个 _doc _id ,但是,在 fetch 阶段,并不需要取回所有数据,在上面的例子中,前100条数据是不需要取的,只需要取优先级队列里的第101到110条数据即可。
需要取的数据可能在不同分片,也可能在同一分片,coordinating node 使用 「multi-get」 来避免多次去同一分片取数据,从而提高性能。
「这种方式请求深度分页是有问题的:」
我们可以假设在一个有 5 个主分片的索引中搜索。当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。
现在假设我们请求第 1000 页—结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。
「对结果排序的成本随分页的深度成指数上升。」
「注意1:」
size的大小不能超过 index.max_result_window 这个参数的设置,默认为10000。
如果搜索size大于10000,需要设置 index.max_result_window 参数
「注意2:」
_doc 将在未来的版本移除,详见:
Elasticsearch 的From/Size方式提供了分页的功能,同时,也有相应的限制。
举个例子,一个索引,有10亿数据,分10个 shards,然后,一个搜索请求,from=1000000,size=100,这时候,会带来严重的性能问题:CPU,内存,IO,网络带宽。
在 query 阶段,每个shards需要返回 1000100 条数据给 coordinating node,而 coordinating node 需要接收 10 * 1000 ,100 条数据,即使每条数据只有 _doc _id 和 _score ,这数据量也很大了?
「在另一方面,我们意识到,这种深度分页的请求并不合理,因为我们是很少人为的看很后面的请求的,在很多的业务场景中,都直接限制分页,比如只能看前100页。」
比如,有1千万粉丝的微信大V,要给所有粉丝群发消息,或者给某省粉丝群发,这时候就需要取得所有符合条件的粉丝,而最容易想到的就是利用 from + size 来实现,不过,这个是不现实的,这时,可以采用 Elasticsearch 提供的其他方式来实现遍历。
深度分页问题大致可以分为两类:
「下面介绍几个官方提供的深度分页方法」
我们可以把scroll理解为关系型数据库里的cursor,因此,scroll并不适合用来做实时搜索,而更适合用于后台批处理任务,比如群发。
这个分页的用法, 「不是为了实时查询数据」 ,而是为了 「一次性查询大量的数据(甚至是全部的数据」 )。
因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。
但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。
不考虑排序的时候,可以结合 SearchType.SCAN 使用。
scroll可以分为初始化和遍历两部,初始化时将 「所有符合搜索条件的搜索结果缓存起来(注意,这里只是缓存的doc_id,而并不是真的缓存了所有的文档数据,取数据是在fetch阶段完成的)」 ,可以想象成快照。
在遍历时,从这个快照里取数据,也就是说,在初始化后,对索引插入、删除、更新数据都不会影响遍历结果。
「基本使用」
初始化指明 index 和 type,然后,加上参数 scroll,表示暂存搜索结果的时间,其它就像一个普通的search请求一样。
会返回一个 _scroll_id , _scroll_id 用来下次取数据用。
「遍历」
这里的 scroll_id 即 上一次遍历取回的 _scroll_id 或者是初始化返回的 _scroll_id ,同样的,需要带 scroll 参数。
重复这一步骤,直到返回的数据为空,即遍历完成。
「注意,每次都要传参数 scroll,刷新搜索结果的缓存时间」 。另外, 「不需要指定 index 和 type」 。
设置scroll的时候,需要使搜索结果缓存到下一次遍历完成, 「同时,也不能太长,毕竟空间有限。」
「优缺点」
缺点:
「优点:」
适用于非实时处理大量数据的情况,比如要进行数据迁移或者索引变更之类的。
ES提供了scroll scan方式进一步提高遍历性能,但是scroll scan不支持排序,因此scroll scan适合不需要排序的场景
「基本使用」
Scroll Scan 的遍历与普通 Scroll 一样,初始化存在一点差别。
需要指明参数:
「Scroll Scan与Scroll的区别」
如果你数据量很大,用Scroll遍历数据那确实是接受不了,现在Scroll接口可以并发来进行数据遍历了。
每个Scroll请求,可以分成多个Slice请求,可以理解为切片,各Slice独立并行,比用Scroll遍历要快很多倍。
上边的示例可以单独请求两块数据,最终五块数据合并的结果与直接scroll scan相同。
其中max是分块数,id是第几块。
Search_after 是 ES 5 新引入的一种分页查询机制,其原理几乎就是和scroll一样,因此代码也几乎是一样的。
「基本使用:」
第一步:
返回出的结果信息 :
上面的请求会为每一个文档返回一个包含sort排序值的数组。
这些sort排序值可以被用于 search_after 参数里以便抓取下一页的数据。
比如,我们可以使用最后的一个文档的sort排序值,将它传递给 search_after 参数:
若我们想接着上次读取的结果进行读取下一页数据,第二次查询在第一次查询时的语句基础上添加 search_after ,并指明从哪个数据后开始读取。
「基本原理」
es维护一个实时游标,它以上一次查询的最后一条记录为游标,方便对下一页的查询,它是一个无状态的查询,因此每次查询的都是最新的数据。
由于它采用记录作为游标,因此 「SearchAfter要求doc中至少有一条全局唯一变量(每个文档具有一个唯一值的字段应该用作排序规范)」
「优缺点」
「优点:」
「缺点:」
SEARCH_AFTER 不是自由跳转到任意页面的解决方案,而是并行滚动多个查询的解决方案。
分页方式性能优点缺点场景 from + size低灵活性好,实现简单深度分页问题数据量比较小,能容忍深度分页问题 scroll中解决了深度分页问题无法反应数据的实时性(快照版本)维护成本高,需要维护一个 scroll_id海量数据的导出需要查询海量结果集的数据 search_after高性能最好不存在深度分页问题能够反映数据的实时变更实现复杂,需要有一个全局唯一的字段连续分页的实现会比较复杂,因为每一次查询都需要上次查询的结果,它不适用于大幅度跳页查询海量数据的分页
参照:https://www.elastic.co/guide/en/elasticsearch/reference/master/paginate-search-results.html#scroll-search-results
在 7.* 版本中,ES官方不再推荐使用Scroll方法来进行深分页,而是推荐使用带PIT的 search_after 来进行查询;
从 7.* 版本开始,您可以使用 SEARCH_AFTER 参数通过上一页中的一组排序值检索下一页命中。
使用 SEARCH_AFTER 需要多个具有相同查询和排序值的搜索请求。
如果这些请求之间发生刷新,则结果的顺序可能会更改,从而导致页面之间的结果不一致。
为防止出现这种情况,您可以创建一个时间点(PIT)来在搜索过程中保留当前索引状态。
在搜索请求中指定PIT:
分别分页获取 1 - 10 , 49000 - 49010 , 99000 - 99010 范围各10条数据(前提10w条),性能大致是这样:
对于向前翻页,ES中没有相应API,但是根据官方说法(https://github.com/elastic/elasticsearch/issues/29449),ES中的向前翻页问题可以通过翻转排序方式来实现即:
Scroll和 search_after 原理基本相同,他们都采用了游标的方式来进行深分页。
这种方式虽然能够一定程度上解决深分页问题。但是,它们并不是深分页问题的终极解决方案,深分页问题 「必须避免!!」 。
对于Scroll,无可避免的要维护 scroll_id 和 历史 快照,并且,还必须保证 scroll_id 的存活时间,这对服务器是一个巨大的负荷。
对于 Search_After ,如果允许用户大幅度跳转页面,会导致短时间内频繁的搜索动作,这样的效率非常低下,这也会增加服务器的负荷,同时,在查询过程中,索引的增删改会导致查询数据不一致或者排序变化,造成结果不准确。
Search_After 本身就是一种业务折中方案,它不允许指定跳转到页面,而只提供下一页的功能。
Scroll默认你会在后续将所有符合条件的数据都取出来,所以,它只是搜索到了所有的符合条件的 doc_id (这也是为什么官方推荐用 doc_id 进行排序,因为本身缓存的就是 doc_id ,如果用其他字段排序会增加查询量),并将它们排序后保存在协调节点(coordinate node),但是并没有将所有数据进行fetch,而是每次scroll,读取size个文档,并返回此次读取的最后一个文档以及上下文状态,用以告知下一次需要从哪个shard的哪个文档之后开始读取。
这也是为什么官方不推荐scroll用来给用户进行实时的分页查询,而是适合于大批量的拉取数据,因为它从设计上就不是为了实时读取数据而设计的。
es数据库优缺点为。1、优点:速度快,ES是专门为文本搜索而设计的,使用者可以通过简单的API查询所需文档并得到响应;可扩展,ES可以轻松地分配分布在多个节点上的数据和 *** 作,用户可以轻松地扩展并提高性能;可靠性高,ES可以水平扩展,包括自动集群和d性搜索等功能,具有优秀的故障转移和恢复能力;易用性好,ES使用RESTAPI进行交互,具有良好的可 *** 作性和易部署性。
2、缺点:数据安全性差,ES对数据的安全性要求需要用户自己保障,需配置好权限控制等安全规则;硬盘容量占用方面ES不支持动态裁剪,它将在硬盘中占用更多的空间,并且无法自动删除过期的数据;ES的排名算法相对简单,缺乏语义分析等高级特征。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)