大家好,我是Tom哥~
为了便于大家查找问题,了解全貌,整理个目录,我们可以快速全局了解关于mysql数据库,面试官一般喜欢问哪些问题
接下来,我们逐条来看看每个问题及答案
MyISAM 和 InnoDB 的区别?
答案:InnoDB 支持 事务、外键、聚集索引,通过MVCC来支持高并发,索引和数据存储在一起。InnoDB 不保存表的具体行数,执行 select count() from table 时需要全表扫描。而MyISAM 用一个变量保存了整个表的行数。
InnoDB 最小的锁粒度是行锁,MyISAM 最小的锁粒度是表锁,并发能力低。MySQL 将默认存储引擎是 InnoDB
mysql 锁有哪些类型?
答案:mysql锁分为共享锁( S lock ) 、排他锁 ( X lock ),也叫做读锁和写锁。根据粒度,可以分为表锁、页锁、行锁。
什么是间隙锁?
答案:间隙锁是可重复读级别下才会有的锁,mysql会帮我们生成了若干 左开右闭 的区间,结合MVCC和间隙锁可以解决幻读问题。
如何避免死锁?
答案:死锁的四个必要条件:1、互斥 2、请求与保持 3、环路等待 4、不可剥夺。
数据库的隔离级别?
答案:读未提交、读已提交、可重复读(mysql的默认级别,每次读取结果都一样,但是有可能产生幻读)、串行化。
Mysql有哪些类型的索引?
答案:
什么是覆盖索引和回表?
答案:
1、覆盖索引,指的是在一次查询中,一个索引包含所有需要查询的字段的值,可能是返回值或where条件
假如我们创建了一个(money,buyer_id)的联合索引,索引的叶子节点包含了 buyer_id 的信息,则不会再 回表 查询。
2、回表,指查询时一些字段值拿不到,需要到主键索引B+树再查一次。
Mysql的最左前缀原则?
答案:即最左优先,在检索数据时从联合索引的最左边开始匹配,直到遇到范围查询(如:> 、< 、between、like等)
例子:where a = 1 and b = 2 and c > 3 and d = 4 ,如果建立(a,b,c,d)组合索引,d是用不到索引的;如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
线上SQL的调优经验?
答案:
官方为什么建议采用自增id 作为主键?
答案:自增id是连续的,插入过程也是顺序的,总是插入在最后,减少了页分裂,有效减少数据的移动。所以尽量不要使用字符串(如:UUID)作为主键。
索引为什么采用B+树,而不用B-树,红黑树?
答案:提升查询速度,首先要减少磁盘IO次数,也就是要降低树的高度。
事务的特性有哪些?
答案:ACID。
如何实现分布式事务?
答案:
日常工作中,MySQL 如何做优化?
答案:
mysql 主从同步具体过程?
答案:
什么是主从延迟?
答案:指一个写入SQL *** 作在主库执行完后,将数据完整同步到从库会有一个时间差,称之为主从延迟。计算公式:
注意:不同服务器要保持时钟一致
主从延迟排查方法?
答案:通过 show slave status 命令输出的 Seconds_Behind_Master 参数的值来判断
主从延迟要怎么解决?
答案:
如果数据量太大怎么办?
答案:mysql表的数据量一般控制在千万级别,如果再大的话,就要考虑分库分表。除了分表外,列举了面对海量数据业务的一些常见优化手段
分表后ID如何保证全局唯一呢?
答案:分库分表后,多张表共用一套全局id,原来单表主键自增方式满足不了要求。我们需要重新设计一套id生成器。特点:全局唯一、高性能、高可用、方便接入。
分表后可能遇到的哪些问题?
答案:分表后,与单表的最大区别是有分表键 sharding_key ,用来路由具体的物理表,以电商为例,有买家和卖家两个维度,以 buyer_id 路由,无法满足卖家的需求,反之同样道理。如何解决?
A 、B、C都是错的。
A read uncommitted 性能最好
B serializable 安全性最高
C mysql默认隔离级别:repeatable_read
附上一些概念帮助你理解:
脏读、非重复读、幻像读都是不安全的:
1、脏读(dirty read):一个事务可以读取另一个尚未提交事务的修改数据。
2、非重复读(nonrepeatable read):在同一个事务中,同一个查询在T1时间读取某一行,在T2时间重新读取这一行时候,这一行的数据已经发生修改,可能被更新了(update),也可能被删除了(delete)。
3、幻像读(phantom read):在同一事务中,同一查询多次进行时候,由于其他插入 *** 作(insert)的事务提交,导致每次返回不同的结果集。
提高安全性的另一个方面是牺牲效率。所以效率的排名和安全性倒序
再补充一句查看MYsql的隔离级别:select @@tx_isolation;
先来总体说一下我对这个问题的理解,用一句话概括:
数据库是可以控制事务的传播和隔离级别的,Spring在之上又进一步进行了封装,可以在不同的项目、不同的 *** 作中再次对事务的传播行为和隔离级别进行策略控制。
注意:Spring不仅可以控制事务传播行为(PROPAGATION_REQUIRED等),还可以控制事务隔离级别(ISOLATION_READ_UNCOMMITTED等)。
(以下是个人理解,如果有瑕疵请及时指正)
下面我具体解释一下:
为了大家能够更好的理解,先来明确几个知识点:
事务的传播行为:简单来说就是事务是手动提交还是自动提交,事务什么时候开始,什么时候提交。
事务的隔离级别:简单来说,就四个,提交读,提交读,重复读,序列化读。
首先我来描述一下,数据库(mysql)层面上对于事务传播行为和隔离级别的配置和实验方法:
数据库层面(采用命令行):其实mySql命令行很简单,希望实验 *** 作一下:
//连接数据库,我这里是本地,后面是用户名密码,不要打分号,如果指令不行,配置下环境变量,网上有很多。
1 cmd中执行:mysql -hlocalhost -uroot -pmysql
//查看本地数据库事务传播行为是手动提交(0),还是自动提交(1)。
2select @@autocommit;
//如果是0,希望设置为手动提交,这里其实是设置本对话的autocommit,因为如果你再开一个cmd,发现还是没改回来,如果想修改全局的,网上有global方法。
3set @@autocommit=0;
//然后查询本地数据库中的一条记录,我本地数据库为test1;
4use test1;
5select from task where taskid=1;
//同时新开一个窗口cmd,连接数据库,并且修改这条记录,update语句我就不写了,或者直接修改数据库本条记录。
//再次执行select from task where taskid=1;发现值没变。OK因为此时数据库隔离级别为repeatable read 重复读,因为mysql默认的隔离级别是重复读。
//修改数据库隔离级别
6set global transaction isolation level read committed;
//查看一下,可能需要重新连接一下
7select @@tx_isolation;
//这时在执行一下4,5 *** 作,发现值变了,ok。因为已经改变了数据库隔离级别,发生了重复读出不同数据的现象。
(以上 *** 作希望有不明白的上网自学一下,很有用,先把数据库隔离级别弄明白了)
然后再来讲一下,Spring对事务传播行为和隔离级别的二次封装。
因为不同项目可能在一个mysql的不同数据库上,所以可以在项目中配置数据库的传播行为和隔离级别:
关于spring的传播行为(PROPAGATION_REQUIRED、PROPAGATION_REQUIRED等),我《数据库隔离级别(mysql+Spring)与性能分析 》文章中有讲,网上也有很多相关资料,我就不说了。
关于spring的事务隔离级别与数据库的一样,也是那四个,多了一个default,我也不仔细讲了。
下面主要讲一下spring的配置方法:
<property name="transactionAttributes">
<props>
<prop key="save">PROPAGATION_REQUIRED</prop>
<prop key="update">PROPAGATION_REQUIRED</prop>
<prop key="delete">PROPAGATION_REQUIRED</prop>
<prop key="get">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="find">PROPAGATION_REQUIRED,ISOLATION_READ_UNCOMMITTED</prop>
</props>
就以find为例,可以配置这么配置,前面是控制传播行为,后面是控制事务隔离级别的。那么这时哪怕数据库层面上是重复读,但是还是以这里为准,你会发现在同一个事务中两次查询的结果是不一样的。
最后扫除一个盲区,readonly这个属性,是放在传播行为中的,一般书都这么归类,我也尝试了一下,readonly并不能影响数据库隔离级别,只是配置之后,不允许在事务中对数据库进行修改 *** 作,仅此而已。
下面,将利用MySQL的客户端程序,分别测试几种隔离级别。测试数据库为test,表为tx;表结构:
id int
num
int
两个命令行客户端分别为A,B;不断改变A的隔离级别,在B端修改数据。
(一)、将A的隔离级别设置为read uncommitted(未提交读)
在B未更新数据之前:
客户端A:
B更新数据:
客户端B:
客户端A:
经过上面的实验可以得出结论,事务B更新了一条记录,但是没有提交,此时事务A可以查询出未提交记录。造成脏读现象。未提交读是最低的隔离级别。
(二)、将客户端A的事务隔离级别设置为read committed(已提交读)
在B未更新数据之前:
客户端A:
B更新数据:
客户端B:
客户端A:
经过上面的实验可以得出结论,已提交读隔离级别解决了脏读的问题,但是出现了不可重复读的问题,即事务A在两次查询的数据不一致,因为在两次查询之间事务B更新了一条数据。已提交读只允许读取已提交的记录,但不要求可重复读。
为了避免上面出现的几种情况,在标准SQL规范中,定义了4个事务隔离级别,不同的隔离级别对事务的处理不同。 序列化(Serializable):提供严格的事务隔离。它要求事务序列化执行,事务只能一个接着一个地执行,不能并发执行。仅仅通过“行级锁”是无法实现事务序列化的,必须通过其他机制保证新插入的数据不会被刚执行查询 *** 作的事务访问到。
隔离级别越高,越能保证数据的完整性和一致性,但是对并发性能的影响也越大。对于多数应用程序,可以优先考虑把数据库系统的隔离级别设为Read Committed。它能够避免脏读取,而且具有较好的并发性能。尽管它会导致不可重复读、幻读和第二类丢失更新这些并发问题,在可能出现这类问题的个别场合,可以由应用程序采用悲观锁或乐观锁来控制。
以上就是关于MYSQL 那点破事!索引、SQL调优、事务、B+树、分表 ....全部的内容,包括:MYSQL 那点破事!索引、SQL调优、事务、B+树、分表 ....、数据库隔离级别,以下叙述哪些错误的是、spring mvc 怎么样设置mysql事物隔离级别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)