各
企业负责人
、****,进驻时间,进驻合同签约状态,
企业资质
(国企、私企、外企)
另外如果你涉及到企业的地理信息,厂房分布什么的,就得用先用shape文件画出来再转入
空间数据库
了
像这种微观数据库都需要购买的,即使cnki也是需要购买的啊。统计年鉴那种宏观数据不适合当前实证研究的方向,现在更多的是使用微观层面的数据。而且,使用微观数据最好要学会用stata来处理数据。向你们学校建议买吧,一套工业企业数据库一二十万。
北京大学图书馆的中国工业企业数据库收录了中国大陆和香港地区的中型和大型企业信息。下面是使用步骤:
1 进入北京大学图书馆网站,点击“数据库检索”进入数据库页面。
2 在左侧选择“工商管理”类别,在列表中找到“中国工业企业数据库”,点击进入。
3 点击“登录”按钮,输入您的北京大学图书馆账号和密码进行验证登录。
4 进入数据库界面后,您可以选择“高级检索”或“常规检索”进行搜索 *** 作。在高级检索中,您可以通过设定关键词、时间、地区等多个条件进行精细化搜索;在常规检索中,则可直接在搜索框内输入查询词即可。
5 检索结果会显示相应的企业名称、类型、所属行业、注册资本等信息。点击具体企业名称进一步查看详细信息。
6 在详细信息页面,您可以查看该企业的基本情况介绍、经营概况、财务数据等各项内容。
请注意,使用此数据库需要有北京大学图书馆账号,并且仅适用于在校师生及其他特定人群。如有任何疑问,请咨询北京大学图书馆相关工作人员。
中国工业企业数据库仅从字面上看没有办法区别国有企业、民营企业、外资企业,要看公司的控股股东是国资委还是民营企业家,还是外籍人士。你了查阅公司的背景资料来区分,这些资料一般不是公开的。
今天真是一个美好的时代,有无数的开源系统可以为我们提供服务,现在有许多开发软件可以用到工业大数据中,当然很多系统还不成熟,应用到工业中还需要小心,并且需要开发人员对其进行一定的优化和调整。下面就简单介绍一些开源的大数据工具软件,看看有哪些能够应用到工业大数据领域。
下面这张图是我根据网上流传的一张开源大数据软件分类图整理的:
我们可以把开源大数据软件分成几类,有一些可以逐步应用到工业大数据领域,下面就一一介绍一下这些软件。(以下系统介绍大都来源于网络)
1、数据存储类
(1)关系数据库MySQL
这个就不用太多介绍了吧,关系型数据库领域应用最广泛的开源软件,目前属于 Oracle 旗下产品。
(2)文件数据库Hadoop
Hadoop是大数据时代的明星产品,它最大的成就在于实现了一个分布式文件系统(Hadoop Distributed FileSystem),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上,而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。
Hadoop可以在工业大数据应用中用来作为底层的基础数据库,由于它采用了分布式部署的方式,如果是私有云部署,适用于大型企业集团。如果是公有云的话,可以用来存储文档、视频、图像等资料。
(3)列数据库Hbase
HBase是一个分布式的、面向列的开源数据库,HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
基于Hbase开发的OpenTSDB,可以存储所有的时序(无须采样)来构建一个分布式、可伸缩的时间序列数据库。它支持秒级数据采集所有metrics,支持永久存储,可以做容量规划,并很容易的接入到现有的报警系统里。
这样的话,它就可以替代在工业领域用得最多的实时数据库。
(4)文档数据库MongoDB
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
MongoDB适合于存储工业大数据中的各类文档,包括各类图纸、文档等。
(5)图数据库Neo4j/OrientDB
图数据库不是存放的,是基于图的形式构建的数据系统。
Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、 企业级 的数据库的所有好处。
OrientDB是兼具文档数据库的灵活性和图形数据库管理 链接 能力的可深层次扩展的文档-图形数据库管理系统。可选无模式、全模式或混合模式下。支持许多高级特性,诸如ACID事务、快速索引,原生和SQL查询功能。可以JSON格式导入、导出文档。若不执行昂贵的JOIN *** 作的话,如同关系数据库可在几毫秒内可检索数以百记的链接文档图。
这些数据库都可以用来存储非结构化数据。
2、数据分析类
(1)批处理MapReduce/Spark
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。
这些大数据的明星产品可以用来做工业大数据的处理。
(2)流处理Storm
Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
(3)图处理Giraph
Giraph是什么?Giraph是Apache基金会开源项目之一,被定义为迭代式图处理系统。他架构在Hadoop之上,提供了图处理接口,专门处理大数据的图问题。
Giraph的存在很有必要,现在的大数据的图问题又很多,例如表达人与人之间的关系的有社交网络,搜索引擎需要经常计算网页与网页之间的关系,而map-reduce接口不太适合实现图算法。
Giraph主要用于分析用户或者内容之间的联系或重要性。
(4)并行计算MPI/OpenCL
OpenCL(全称Open Computing Language,开放运算语言)是第一个面向 异构系统 通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算 服务器 、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在 游戏 、 娱乐 、科研、医疗等各种领域都有广阔的发展前景。
(5)分析框架Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
(6)分析框架Pig
Apache Pig 是apache平台下的一个免费开源项目,Pig为大型数据集的处理提供了更高层次的抽象,很多时候数据的处理需要多个MapReduce过程才能实现,使得数据处理过程与该模式匹配可能很困难。有了Pig就能够使用更丰富的数据结构。[2]
Pig LatinPig Latin 是一个相对简单的语言,一条语句 就是一个 *** 作,与数据库的表类似,可以在关系数据库中找到它(其中,元组代表行,并且每个元组都由字段组成)。
Pig 拥有大量的数据类型,不仅支持包、元组和映射等高级概念,还支持简单的数据类型,如 int、long、float、double、chararray 和 bytearray。并且,还有一套完整的比较运算符,包括使用正则表达式的丰富匹配模式。
您好,乡镇工业企业数据库包括企业基本信息、财务信息、经营信息、社会责任信息等。企业基本信息包括企业名称、法定代表人、注册资本、注册地址、经营范围、经营状态等。财务信息包括企业财务报表、财务指标、财务分析等。经营信息包括企业资质、经营状况、营业执照、经营许可证等。社会责任信息包括企业社会责任报告、社会责任指标、社会责任评价等。
以上就是关于想要模拟一个工业园的数据库 需要那些数据全部的内容,包括:想要模拟一个工业园的数据库 需要那些数据、如何使用中国工业企业数据库、北京大学图书馆中国工业企业数据库怎么用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)