MySQL count(*) 性能优化

MySQL count(*) 性能优化,第1张

很多人认为count查询非常快,但是在加上筛选条件那就是未必的了。测试:user表中4000w数据

为什么统计全部速度快,不统计全部却慢了?

因为mysql默认已经统计过表中的总记录了,所以查询非常快

假设需要查询数据中user表id大于1000的数据,如何快速查询?(上面的查询用时7秒!)

原理:需要id大于1000的人数=总人数-id小于1000的人数(总人数mysql秒完成,id小于1000的人数记录少查询快)

以上的方法只是解决了部分场景,假如现在需要统计用户注册渠道呢?假设注册渠道有QQ和微信,并且2种渠道注册人数一致,数据达到百万。

那么 select count( ) from user where way='qq';和 select count( ) from user where way<>'qq' 无区别

这种情况就建议建立统计表,用户注册事件发生即可+1 *** 作

从 MySQL 57 开始,开发人员改变了 InnoDB 构建二级索引的方式,采用自下而上的方法,而不是早期版本中自上而下的方法了。在这篇文章中,我们将通过一个示例来说明如何构建 InnoDB 索引。最后,我将解释如何通过为 innodb_fill_factor 设置更合适的值。

索引构建过程

在有数据的表上构建索引,InnoDB 中有以下几个阶段:1读取阶段(从聚簇索引读取并构建二级索引条目)2合并排序阶段3插入阶段(将排序记录插入二级索引)在 56 版本之前,MySQL 通过一次插入一条记录来构建二级索引。这是一种“自上而下”的方法。搜索插入位置从树的根部(顶部)开始并达到叶页(底部)。该记录插入光标指向的叶页上。在查找插入位置和进行业面拆分和合并方面开销很大。从MySQL 57开始,添加索引期间的插入阶段使用“排序索引构建”,也称为“批量索引加载”。在这种方法中,索引是“自下而上”构建的。即叶页(底部)首先构建,然后非叶级别直到根(顶部)。

示例

在这些情况下使用排序的索引构建:

ALTER TABLE t1 ADD INDEX(or CREATE INDEX)

ALTER TABLE t1 ADD FULLTEXT INDEX

ALTER TABLE t1 ADD COLUMN, ALGORITHM = INPLACE

OPIMIZE t1

对于最后两个用例,ALTER 会创建一个中间表。中间表索引(主要和次要)使用“排序索引构建”构建。

算法

在 0 级别创建页,还要为此页创建一个游标

使用 0 级别处的游标插入页面,直到填满

页面填满后,创建一个兄弟页(不要插入到兄弟页)

为当前的整页创建节点指针(子页中的最小键,子页码),并将节点指针插入上一级(父页)

在较高级别,检查游标是否已定位。如果没有,请为该级别创建父页和游标

在父页插入节点指针

如果父页已填满,请重复步骤 3, 4, 5, 6

现在插入兄弟页并使游标指向兄弟页

在所有插入的末尾,每个级别的游标指向最右边的页。提交所有游标(意味着提交修改页面的迷你事务,释放所有锁存器)

为简单起见,上述算法跳过了有关压缩页和 BLOB(外部存储的 BLOB)处理的细节。

通过自下而上的方式构建索引

为简单起见,假设子页和非子页中允许的 最大记录数为 3

CREATE TABLE t1 (a INT PRIMARY KEY, b INT, c BLOB);

INSERT INTO t1 VALUES (1, 11, 'hello111');

INSERT INTO t1 VALUES (2, 22, 'hello222');

INSERT INTO t1 VALUES (3, 33, 'hello333');

INSERT INTO t1 VALUES (4, 44, 'hello444');

INSERT INTO t1 VALUES (5, 55, 'hello555');

INSERT INTO t1 VALUES (6, 66, 'hello666');

INSERT INTO t1 VALUES (7, 77, 'hello777');

INSERT INTO t1 VALUES (8, 88, 'hello888');

INSERT INTO t1 VALUES (9, 99, 'hello999');

INSERT INTO t1 VALUES (10, 1010, 'hello101010');

ALTER TABLE t1 ADD INDEX k1(b);

InnoDB 将主键字段追加到二级索引。二级索引 k1 的记录格式为(b, a)。在排序阶段完成后,记录为:

(11,1), (22,2), (33,3), (44,4), (55,5), (66,6), (77,7), (88,8), (99,9), (1010, 10)

初始插入阶段

让我们从记录 (11,1) 开始。

在 0 级别(叶级别)创建页

创建一个到页的游标

所有插入都将转到此页面,直到它填满了

箭头显示游标当前指向的位置。它目前位于第 5 页,下一个插入将转到此页面。

还有两个空闲插槽,因此插入记录 (22,2) 和 (33,3) 非常简单

对于下一条记录 (44,4),页码 5 已满(前面提到的假设最大记录数为 3)。这就是步骤。

页填充时的索引构建

创建一个兄弟页,页码 6

不要插入兄弟页

在游标处提交页面,即迷你事务提交,释放锁存器等

作为提交的一部分,创建节点指针并将其插入到 当前级别 + 1 的父页面中(即在 1 级别)

节点指针的格式 (子页面中的最小键,子页码) 。第 5 页的最小键是 (11,1) 。在父级别插入记录 ((11,1),5)。

1 级别的父页尚不存在,MySQL 创建页码 7 和指向页码 7 的游标。

将 ((11,1),5) 插入第 7 页

现在,返回到 0 级并创建从第 5 页到第 6 页的链接,反之亦然

0 级别的游标现在指向兄弟页,页码为 6

将 (44,4) 插入第 6 页

下一个插入 - (55,5) 和 (66,6) - 很简单,它们转到第 6 页。

插入记录 (77,7) 类似于 (44,4),除了父页面 (页面编号 7) 已经存在并且它有两个以上记录的空间。首先将节点指针 ((44,4),8) 插入第 7 页,然后将 (77,7) 记录到同级 8 页中。

插入记录 (88,8) 和 (99,9) 很简单,因为第 8 页有两个空闲插槽。

下一个插入 (1010,10) 。将节点指针 ((77,7),8) 插入 1级别的父页(页码 7)。

MySQL 在 0 级创建同级页码 9。将记录 (1010,10) 插入第 9 页并将光标更改为此页面。

以此类推。在上面的示例中,数据库在 0 级别提交到第 9 页,在 1 级别提交到第 7 页。

我们现在有了一个完整的 B+-tree 索引,它是自下至上构建的!

索引填充因子

全局变量 innodb_fill_factor 用于设置插入 B-tree 页中的空间量。默认值为 100,表示使用整个业面(不包括页眉)。聚簇索引具有 innodb_fill_factor=100 的免除项。 在这种情况下,聚簇索引也空间的 1 /16 保持空闲。即 625% 的空间用于未来的 DML。

值 80 意味着 MySQL 使用了 80% 的页空间填充,预留 20% 于未来的更新。如果 innodb_fill_factor=100 则没有剩余空间供未来插入二级索引。如果在添加索引后,期望表上有更多的 DML,则可能导致业面拆分并再次合并。在这种情况下,建议使用 80-90 之间的值。此变量还会影响使用 OPTIMIZE TABLE 和 ALTER TABLE DROP COLUMN, ALGOITHM=INPLACE 重新创建的索引。也不应该设置太低的值,例如低于 50。因为索引会占用浪费更多的磁盘空间,值较低时,索引中的页数较多,索引统计信息的采样可能不是最佳的。优化器可以选择具有次优统计信息的错误查询计划。

排序索引构建的优点

没有页面拆分(不包括压缩表)和合并

没有重复搜索插入位置

插入不会被重做记录(页分配除外),因此重做日志子系统的压力较小

缺点

ALTER 正在进行时,插入性能降低 Bug#82940,但在后续版本中计划修复。

以上就是关于MySQL count(*) 性能优化全部的内容,包括:MySQL count(*) 性能优化、mysql innodb select count 查询速度慢,该怎么优化,已加二级索引,还是比较慢,400w数据、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9298208.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存