一场替换传统数据库的行动正在全球范围悄然进行

一场替换传统数据库的行动正在全球范围悄然进行,第1张

随着全球各大 科技 巨头的竞相加入,开源软件技术已经活跃在各个信息技术领域当中。其中,大数据生态成为开源技术的直接受益者。开源技术适用于庞杂的数据管理系统,带来敏捷、高效、可扩展以及可自控的管理能力,并帮助企业降低IT建设及维护成本。2018年双11当天,阿里云原生数据库PolarDB轻松应对了0点0分0秒瞬时提升122倍的数据洪峰。Netflix也采用自研开源架构Metacat将海量数据集合成一个“单一”的数据仓库,大幅提升管理能效。

当前,我国有越来越多的企业、人才加入到开源社区,贡献力也“后来居上”,共同推进开源项目、开源生态的繁荣和可持续发展。

大数据生态成为开源技术重大“受益者”

近年来,在互联网服务、多媒体以及科学研究等多个领域,都可见到大数据的身影。在大数据时代,不断增长的数据量、快速处理数据的需求以及数据类型、结构和来源的多样性给数据库敏捷、高效、可扩展性以及个性化管理带来了全新挑战。

开源技术赋能了大数据生态的高质量发展。赛迪智库信息化和软件服务业所博士蒲松涛表示,经过了数十年的发展,开源软件和开源工具已经应用到了大数据产业发展的各个环节,基于开源软件,企业可以快速构建大数据应用平台,提供丰富的大数据开发和应用工具。

当前,几乎各种规模的企业都在使用开源软件和工具做大数据处理和基于数据的预测分析。开源界也涌现出了Hadoop、OpenStack、OpenShift、Mapreduce、docker等引领行业技术创新方向的重量级开源项目。

华泰人寿基于OpenShift架构打造易于管理的新IT系统,以提升企业竞争力,实现业务数字化转型。在基础设施上,引入红帽OpenShift容器云解决方案和红帽Ceph分布式存储。通过将保险业务上docker云,实现华泰人寿业务的d性伸缩和快速上线,加速其互联网保险项目快速落地。

美国知名在线影片租赁提供商Netflix也采用了大数据发现服务的开源框架Metacat。由于Netflix的数据仓库由许多大型的数据集组成,为了确保数据平台能够横跨这些数据集成为一个“单一”的数据仓库,Netflix开发的元数据服务Metacat,能让数据的发生、发现、处理和管理变得更加快捷高效、处理精度大幅提升;同时还可兼容Spark、Presto、Pig和Hive架构。Netflix软件架构师Ajoy Majumdar指出,开放开源是身为技术公司的竞争战略,既能够将自己的解决方案建立为行业标准和最佳实践,又能建立Netflix的技术品牌,还能从共享生态中获得反馈输入并受益。

事实上,推动大数据应用高质量发展的主流开源平台还有很多,例如Spark、Shark、Bagel等。蒲松涛表示,这些开源平台大幅降低应用门槛,有效帮助企业实现工业级应用,进而带动各行业大规模部署。此外,大数据还涌现出了一批开源支线平台。其中,Storm完全摆脱了经典的MapReduce架构,重新设计了一个适用于流式计算的架构,以数据流为驱动触发计算,计算时效性高,适应有向无环图计算拓扑的设计,计算方式较为灵活,在业界得到了一定的部署应用。

开源社区供需“双赢”中国力量已崛起

开源社区的建立为推动开源软件发展、构建行业竞争优势做出突出贡献,队伍的壮大需要每一位使用者持续不断的贡献智慧,以实现真正的“共赢”。开源的发展历程中,极客、大公司、商业颠覆者轮番登场,开源技术的诉求也从商业驱动向生态驱动发展。中国工程院院士廖湘科指出,开源是软件创新技术的主要来源,是生态抓手,而非赢利的切入点。

开源软件的“共享和贡献”机制吸引了众多开发者的参与,给了每一位开发者“颠覆 游戏 规则”的权利。有了这种生态的加持,信息技术将被快速推进,各个参与者将持续获利。对此,李飞飞表示,开源生态的受益者是开源技术的需求侧和供给侧双方。从供给侧角度来看,参与的人越多,思维碰撞而引发的迭代演进就会越快;从需求侧角度来看,各个企业不仅可以免除被闭源系统“技术绑定”,还可以在开源社区实现数据库技术迁移,企业还可针对企业技术特征进行数据库的个性定制化,实现大量的应用和代码的改造且系统间互相兼容。

中国开源软件推进联盟副 主席 兼秘书长刘澎在PostgreSQL CN 2019上表示,当前国内越来越多的企业为开源做出重要贡献,我国的开源实力已经崛起。以华为、阿里等为代表的开源软件开发者已经逐渐与亚马逊、微软站到了同一高度,实现了从“使用者”到“引领者”的身份转变。

目前,中国企业在Linux基金会中有1个白金会员(华为),1个金牌会员(阿里云)和数十家银牌会员(包括腾讯、中国移动、联想等)。华为在多个开源社区贡献排名前列。中国工程院院士倪光南认为,华为是开源软件的优秀开发代表,通过引进、消化,实现创新发展,进而贡献给整个开源社区。

阿里云也成为 游戏 规则的重要改变者和全球云数据库领跑者之一。2018年,阿里云数据库成功进入Gartner数据库魔力象限,这是该榜单首次出现中国公司。近日,Gartner发布的全球云数据库市场份额榜单中,阿里云位居第三,超越了Oracle、IBM和谷歌。5月21日,阿里云提供传统数据库一键迁移上云能力,可以帮助企业将线下的MySQL、PostgreSQL和Oracle等数据库轻松上云,最快数小时内迁移完成。李飞飞表示,阿里云自研的PolarDB云原生数据库的分布式存储架构具有一写多度、计算与存储分离等优势,帮助淘宝交易平台应对了双11当天瞬时提升122倍的数据洪峰。

此外,国内还有包括百度、浪潮、瀚高等在内的众多企业积极参与并贡献到开源社区当中。人工智能、自动驾驶等新兴信息技术也成为开源项目的重要应用领域。

分类: 商业/理财 >> 广告营销

解析:

数据库营销是IT技术的一种应用,正如其字面含义那样,它利用电子计算机存储量大、成本低的特性以全新方式储存和使用客户资料。应用客户资料数据库最常见的方式是直复营销,许多直复营销从业者甚至把它当作数据库营销的惟一应用方式。但如果直复营销仅仅是指一种运用某种广告媒体诱发一定数量的购买行为的互动性营销方式,那么,它成功的关键是广告媒体,而不是数据库。它只是开发了数据库的一部分功能。

斯坦·瑞普(Stan Rapp)(1989)为数据库营销所下的定义是:企业运用当今计算机和电讯技术的巨大潜力,以个性化、持续性、低成本的方式推进其客户导向的营销活动的能力。数据库营销具有分析客户特征和购买习惯的能力,可以用来创建各种目录及与Acorn和Mosaic那样的全球人口统计数据库相媲美的客户档案库。因此,计算机数据库在寻找目标市场和细分市场方面的精确度远远超过简单的邮购目录或普通广告。

数据库营销还强调建立长期客户关系的重要意义,这种关系被认为对企业的长期战略营销计划具有重大帮助。数据库营销还可以运用计算机存储的客户资料,支持企业与客户之间的沟通,从而使客户和企业均从中获益。

数据库营销的基本作用

(1)更加充分地了解顾客的需要。

(2)为顾客提供更好的服务。顾客数据库中的资料是个性化营销和顾客关系管理的重要基础。

(3)对顾客的价值进行评估。通过区分高价值顾客和一般顾客,对各类顾客采取相应的营销策略。

(4)了解顾客的价值。利用数据库的资料,可以计算顾客生命周期的价值,以及顾客的价值周期。

(5)分析顾客需求行为。根据顾客的历史资料不仅可以预测需求趋势,还可以评估需求倾向的改变。

(6)市场调查和预测。数据库为市场调查提供了丰富的资料,根据顾客的资料可以分析潜在的目标市场。

与传统的数据库营销相比,网络数据库营销的独特价值主要表现在三个方面:动态更新、顾客主动加入、改善顾客关系。

(1)动态更新

在传统的数据库营销中,无论是获取新的顾客资料,还是对顾客反应的跟踪都需要较长的时间,而且反馈率通常较低,收集到的反馈信息还需要繁琐的人工录入,因而数据库的更新效率很低,更新周期比较长,同时也造成了过期、无效数据记录比例较高,数据库维护成本相应也比较答。 网络数据库营销具有数据量大、易于修改、能实现动态数据更新、便于远程维护等多种优点,还可以实现顾客资料的自我更新。网络数据库的动态更新功能不仅节约了大量的时间和资金,同时也更加精确地实现了营销定位,从而有助于改善营销效果。

(2)顾客主动加入

仅靠现有顾客资料的数据库是不够的,除了对现有资料不断更新维护之外,还需要不断挖掘潜在顾客的资料,这项工作也是数据库营销策略的重要内容。在没有借助互联网的情况下,寻找潜在顾客的信息一般比较难,要花很大代价,比如利用有奖销售或者免费使用等机会要求顾客填写某种包含有用信息的表格,不仅需要投入大量资金和人力,而且又受地理区域的限制,覆盖的范围非常有限。

在网络营销环境中,顾客数据在增加要方便得多,而且往往是顾客自愿加入网站的数据库。最新的调查表明,为了获得个性化服务或获得有价值的信息,有超过50%的顾客愿意提供自己的部分个人信息,这对于网络营销人员来说,无疑是一个好消息。请求顾客加入数据库的通常的做法是在网站设置一些表格,在要求顾客注册为会员时填写。但是,网上的信息很丰富,对顾客资源的争夺也很激烈,顾客的要求是很挑剔的,并非什么样的表单都能引起顾客的注意和兴趣,顾客希望得到真正的价值,但肯定不希望对个人利益造成损害,因此,需要从顾客的实际利益出发,合理地利用顾客的主动性来丰富和扩大顾客数据库。在某种意义上,邮件列表可以认为是一种简单的数据库营销,数据库营销同样要遵循自愿加入、自由退出的原则。

(3)改善顾客关系

顾客服务是一个企业能留住顾客的重要手段,在电子商务领域,顾客服务同样是取得成功的最重要因素。一个优秀的顾客数据库是网络营销取得成功的重要保证。 在互联网上,顾客希望得到更多个性化的服务,比如,顾客定制的信息接收方式和接收时间,顾客的兴趣爱好、购物习惯等等都是网络数据库的重要内容,根据顾客个人需求提供针对性的服务是网络数据库营销的基本职能,因此,网络数据库营销是改善顾客关系最有效的工具。

网络数据库由于其种种独特功能而在网络营销中占据重要地位,网络数据库营销通常不是孤立的,应当从网站规划阶段开始考虑,列为网络营销的重要内容,另外,数据库营销与个性化营销、一对一营销有着密切的关系,顾客数据库资料是顾客服务和顾客关系管理的重要基础。

数据库的建立与管理

一、日益重要的数据库

企业顾客的基本资料分别加以搜集、筛选、测试、整理、编集及充实之后,妥善储存、保管。等到企业进行各种直复营销活动之时,依照特定的目的需求,迅速且完整地提供相关个别顾客资料。现在,由于计算机技术发展得十分迅速,电脑在顾客数据库的利用上,贡献很大。

直复营销是以目标顾客个人为对象,以双向沟通的方式进行信息传递的,因此,慎重选择目标顾客群,有系统地搜集目标顾客个别资料,进而形成顾客数据库,并有效运用顾客数据,将是直复营销成功的

重要关键。

数据库形成的六个阶段

顾客数据库从决定成立到向直复营销人员提供信息,大致上有六个阶段:

1、决定建立顾客数据库

2、顾客资料的搜集

3、个别顾客资料卡的内容填写

4、资料的整理及筛选

5、智慧型信息的完成

6、灵活使用顾客数据库的信息。

数据库营销的前景

数据库营销缩短了商业企业与顾客之间的距离,有利于培养和识别顾客忠诚,与顾客建立长期关系,也为开发关系营销和“一对一”营销创造了条件。

1) 以数据库为基础的顾客管理,为关系营销奠定了基础。

关系营销强调与顾客之间建立长期的友好关系以获取长期利益。实践证明,进行顾客管理,培养顾客忠诚度,建立长期稳定的关系,对商业企业是十分重要的。数据库营销不仅受到沃尔玛、麦德龙等传统企业的重视,像亚马逊这样的新型网上企业更是十分重视客户管理。比如,当客户向亚马逊买一本书以后,亚马逊会自动记录下顾客的电子邮箱地址、图书类别,以后定期以电子邮件的形式向顾客推荐此类新书。这种方式极大推动了亚马逊网上销售业务的增长。

2) 数据库营销,使商业企业能够更详细地了解顾客,增加了“一对一”营销的可能。

“一对一”营销是基于信息技术的发展提出的新的营销理念,就是将市场细分到消费者个体,根据其消费习惯和需求特点提供个 。最近,在美国许多大城市出现一些“快速服装店”,其目标顾客是有一定身份和地位的职业女性。她们或者工作很忙无暇购物,或者是厌烦挑选商品的烦琐过程,但都需要不断改变形象。服装店便专门为这类顾客建立“一对一”档案,从身高、体重、体形到气质、职业、性格,都有详细的记录和分析。

这些是关于数据库营销的一些东西,希望能对你有所帮助阿。

数据挖掘、海量存储、数据仓库、智能商务运算、高性能并发管理与控制

主流产品的发展现状

数据库管理系统经历了30多年的发展演变,已经取得了辉煌的成就,发展成了一门内容丰富的学科,形成了总量达数百亿美元的一个软件产业。根据Gartner Dataquest公司的调查,2000年国际数据库市场销售总额达88亿美元,比1999年增长10%。根据CCID的报告,2000年的中国数据库管理系统市场销售总额达248亿元,比1999年增长了417%,占软件市场总销售额的108%。可见,数据库已经发展成为一个规模巨大、增长迅速的市场。

目前,市场上具有代表性的数据库产品包括Oracle公司的Oracle、IBM公司的DB2以及微软的SQL Server等。在一定意义上,这些产品的特征反映了当前数据库产业界的最高水平和发展趋势。因此,分析这些主流产品的发展现状,是我们了解数据库技术发展的一个重要方面。

关系数据库技术仍然是主流

关系数据库技术出现在20世纪70年代、经过80年代的发展到90年代已经比较成熟,在90年代初期曾一度受到面向对象数据库的巨大挑战,但是市场最后还是选择了关系数据库。无论是Oracle公司的Oracle 9i、IBM公司的DB2、还是微软的SQL Server等都是关系型数据库。Gartner Dataquest的报告显示关系数据库管理系统(RDBMS)的市场份额最大, 2000年RDBMS的市场份额占整个数据库市场的80%,这个比例比1999年增长了15%。这组数据充分说明RDBMS仍然是当今最为流行的数据库软件。当前,由于互联网应用的兴起,XML格式的数据的大量出现,学术界有一部分学者认为下一代数据库将是支持XML模型的新型的数据库。作者对此持否定态度,认为关系技术仍然是主流,无论是多媒体内容管理、XML数据支持、还是复杂对象支持等都将是在关系系统内核技术基础上的扩展。

产品形成系列化

一方面,Web和数据仓库等应用的兴起,数据的绝对量在以惊人的速度迅速膨胀;另一方面,移动和嵌入式应用快速增长。针对市场的不同需求,数据库正在朝系列化方向发展。例如IBM公司的DB2通用数据库产品包括了从高端的企业级并行数据库服务器,到移动端产品DB2 Everywhere的一整套系列。从支持平台看,今天的DB2已经不再是大型机上的专有产品,它支持目前主流的各种平台,包括Linux和Windows NT。此外,它还有各种中间件产品,如DB2 Connect、DB2 Datajointer、DB2 Replication等,构成了一个庞大的数据库家族。

支持各种互联网应用

数据库管理系统是网络经济的重要基础设施之一。支持Internet(甚至于Mobile Internet)数据库应用已经成为数据库系统的重要方面。例如,Oracle公司从8版起全面支持互联网应用,是互联网数据库的代表。微软公司更是将SQL Server作为其整个NET计划中的一个重要的成分。对于互联网应用,由于用户数量是无法事先预测的,这就要求数据库相比以前拥有能处理更大量的数据以及为更多的用户提供服务的能力,也就是要拥有良好的可伸缩性及高可用性。此外,互联网提供大量以XML格式数据为特征的半结构化数据,支持这种类型的数据的存储、共享、管理、检索等也是各数据库厂商的发展方向。

向智能化集成化方向扩展

数据库技术的广泛使用为企业和组织收集并积累了大量的数据。数据丰富知识贫乏的现实直接导致了联机分析处理(OLAP)、数据仓库(Data Warehousing)和数据挖掘(Data Mining)等技术的出现,促使数据库向智能化方向发展。同时企业应用越来越复杂,会涉及到应用服务器、Web服务器、其它数据库、旧系统中的应用以及第三方软件等,数据库产品与这些软件是否具有良好集成性往往关系到整个系统的性能。Oracle公司的Oracle 9i 产品包括了OLAP、数据挖掘、ETL工具等一套完整的BI(商业智能)支持平台,中间件产品与其核心数据库具有紧密集成的特性,Oracle Application Server 增加的一项关键功能是高速缓存特性,该特性可以将数据从数据库卸载到应用服务器,加速 Web用户对数据的访问速度。IBM 公司也把BI套件作为其数据库的一个重点来发展。微软认为商务智能将是其下一代主要的利润点。

数据库技术的发展趋势

数据、计算机硬件和数据库应用,这三者推动着数据库技术与系统的发展。数据库要管理的数据的复杂度和数据量都在迅速增长;计算机硬件平台的发展仍然实践着摩尔定律;数据库应用迅速向深度、广度扩展。尤其是互联网的出现,极大地改变了数据库的应用环境,向数据库领域提出了前所未有的技术挑战。这些因素的变化推动着数据库技术的进步,出现了一批新的数据库技术,如Web数据库技术、并行数据库技术、数据仓库与联机分析技术、数据挖掘与商务智能技术、内容管理技术、海量数据管理技术等。限于篇幅,本文不可能逐一去展开来阐述这些方面的变化,只是从这些变化中归纳出数据库技术发展呈现出的突出特点。

“四高” 即DBMS具有高可靠性、高性能、高可伸缩性和高安全性。数据库是企业信息系统的核心和基础,其可靠性和性能是企业***非常关心的问题。因为,一旦宕机会给企业造成巨大的经济损失,甚至会引起法律的纠纷。最典型的例子就是证券交易系统,如果在一个行情来临的时候,由于交易量的猛增,造成数据库系统的处理能力不足,导致数据库系统崩溃,将会给证券公司和股民造成巨大的损失。在我国计算机应用的早期,由于计算机系统还不是企业运营必要的成分,人们对数据库的重要性认识不足,而且为了经费上的节约常常采用一些低层次的数据管理软件,如dBASE等,或者盗版的软件。但是,随着信息化进程的深化,计算机系统越来越成为企业运营的不可缺少的部分,这时,数据库系统的稳定和高效是必要的条件。在互联网环境下还要考虑支持几千或上万个用户同时存取和7x24小时不间断运行的要求,提供联机数据备份、容错、容灾以及信息安全措施等。

事实上,数据库系统的稳定和高效也是技术上长久不衰的追求。此外,从企业信息系统发展的角度上看,一个系统的可扩展能力也是非常重要的。由于业务的扩大,原来的系统规模和能力已经不再适应新的要求的时候,不是重新更换更高档次的机器,而是在原有的基础上增加新的设备,如处理器、存储器等,从而达到分散负载的目的。数据的安全性是另一个重要的课题,普通的基于授权的机制已经不能满足许多应用的要求,新的基于角色的授权机制以及一些安全功能要素,如存储隐通道分析、标记、加密、推理控制等,在一些应用中成为切切实实的需要。

“互联” 指数据库系统要支持互联网环境下的应用, 要支持信息系统间“互联互访”,要实现不同数据库间的数据交换和共享,要处理以XML类型的数据为代表的网上数据,甚至要考虑无线通讯发展带来的革命性的变化。与传统的数据库相比,互联网环境下的数据库系统要具备处理更大量的数据以及为更多的用户提供服务的能力,要提供对长事务的有效支持,要提供对XML类型数据的快速存取的有效支持。

“协同” 面向行业应用领域要求,在DBMS核心基础上,开发丰富的数据库套件及应用构件,通过与制造业信息化、电子政务等领域应用套件捆绑,形成以DBMS为核心的面向行业的应用软件产品家族。满足应用需求,协同发展数据库套件与应用构件,已成为当今数据库技术与产品发展的新趋势。规划中的Oracle 11i的主要扩展方面据称主要也是各种面向应用套件的支持。

经常会有人问我数据库是干啥的,其实一开始我是拒绝回答的,因为我也不能做到通俗易懂的表达出来,毕竟我接触这个概念也没有多长时间,但随着问的人多了,我觉得是时候脑补一下我的第一堂课了,万一哪天冒出来个货跟你掰扯这事儿,你没分分钟给他说清,最后弄个丢里儿丢面儿,好尴尬呀。

数据库,说白了就是按照数据结构来组织、存储和管理数据的仓库,这些数据是结构化的,并可为多种应用服务。也就是说,数据库是使用计算机服务器来存储数据的,专门用来提供各种数据服务。可以这样想像,过去一个公司的所有财务数据都是放在保险柜里面,而现在我们就可以针对这些财务数据搭建一个数据库放在某台计算机或服务器上面;再比如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。最常见的数据库有:银行储蓄系统、手机话费系统、美容美发会员系统、超市会员积分系统、水电费系统、机票或火车票系统等,这些都需要后台数据库基础设施的支撑。举了这么多例子,应该是把数据库说明白了,至少能在大脑里面有个概念,知道这个东西是干啥的。

现在大数据被炒的红得发紫,而大数据的基础也是数据,由此可见,数据是一个企业的核心资源,说它是企业的立身之本、发展之基都不为过,因此,维护数据库的数据库管理员(DBA)是企业不可或缺的。

目前市面上的数据库产品有很多,单从规模上分可分为大型、中型、小型几种,典型的数据库产品如下:

大型数据库:Oracle、DB2、Sybase;

中型数据库:MySQL、SQLServer、Infomix;

小型数据库:Access、VisualFoxpro。在众多的数据库产品中,Oracle数据库一直处于行业领导先地位,也是当今最流行的关系型数据库。Oracle可翻译成"甲骨文",它是一家以数据库为主业的全球化公司,是全球第二大软件公司(第一名是微软公司),目前Oracle在数据库软件市场已经排名第一,数据库软件市场份额达到486%,遥遥领先于第二名占有率仅为207%的IBM公司的DB2。在中国市场上的计算机专业系统后台所使用的数据库尤以Oracle数据库居多。但是购买Oracle数据库需要很大一笔费用,一般的大型企业使用,需要有专业人员进行管理和维护,中小企业承担不起。中小企业为了节省成本,一般使用MySQL、PostgreSQL这类免费开源的数据库,所以Oracle数据库相关的工作岗位一般是在大型企业中。

对于为什么选择Oracle数据库,而不是其他的数据库

第一,是因为Oracle数据库占据最大的市场份额,并且越来越大,市场需要很多Oracle数据库方面的人才,中国有句老话说"做对事,选对人",是同样的道理;第二,是很多非Oracle数据库的老系统正往Oracle数据库迁移,其他数据库市场占有率在减少,其他数据库工作者有面临失业的风险;第三,Oracle有大量的官方学习文档,还有部分中文文档,可以有效地进行学习;第四,Oracle有大量的从业人员,有共同方向的朋友可以互相帮助,不再是孤胆英雄;第五,是可以很容易地从Oracle官方网站下载功能齐全的数据库最新版本进行学习,可以让你了解数据库方面的最新发展趋势等。

在此说明,以后的所有内容都是基于Oracle11g数据库产品的,下面我们就简单介绍一下Oracle11g的系列产品:

企业版(EnterpriseEdition)此版本包含了数据库的所有组件,并且能够通过购买选项和程序包来进一步对其增强。

能支持例如大业务量的在线事务处理OLTP(On-LineTransactionProcessing联机事务处理系统)环境、查询密集的数据仓库和要求苛刻的互联网应用程序。

标准版1(StandardEditionOne)此版本为工作组、部门级和互联网、内联网应用程序提供了前所未有的易用性和性价比。从针对小型商务的单服务器环境到大型的分布式部门环境,该版本包含了构建重要商务应用程序所必需的全部工具。它仅许可在最高容量为2个处理器的服务器上使用,支持Windows/Linux/UNIX *** 作系统,并支持64位平台 *** 作系统。

标准版(StandardEdition)此版本提供了StandardEditionOne所不具有的易用性、能力和性能,并且利用真正的应用集群(RAC)提供了对更大型计算机和服务集群的支持。它可以在最高容量为4个处理器的单台服务器上、或者在一个支持最多4个处理器的集群上使用,可支持Windows、Linux和UNIX *** 作系统,并支持64位平台 *** 作系统。

简化版此版本支持与标准版1、标准版和企业版完全兼容的单用户开发和部署。通过将Oracle数据库获奖的功能引入到个人工作站中,该版本提供了结合世界上最流行的数据库功能的数据库,并且该数据库具有桌面产品通常具有的易用性和简单性,可支持Linux和Windows *** 作系统。

从存储结构上来说,目前流行的数据库主要包含以下两种:

RDBMS:关系型数据库,是指采用了关系模型来组织数据的数据库;

NoSQL数据库,是指那些非关系型的、分布式的数据库。简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

关系型数据库优点:

1、容易理解

二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。

2、使用方便

通用的SQL语言使得 *** 作关系型数据库非常方便。

3、易于维护

丰富的完整性大大减低了数据冗余和数据部移植的概率。

4、事务安全

所有关系型数据库都不同程度的遵守事物的四个基本属性,因此对于银行、电信、证券等交易型业务是不可或缺的。

关系型数据库的瓶颈:

1、高并发读写需求

网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统型数据库来说,硬盘I/O是一个很大的瓶颈。

2、海量数据的高效率读写

互联网上每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的。

3、高扩展性和可用性

在基于WEB的结构中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像WEBServer和APPLICATIONServer那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。

NoSQL数据库

NoSQL一词首先是CarloStrozzi在1998年提出的。2009年再次提出了NoSQL一词,用于指那些非关系型的、分布式的,且一般不保证遵循ACID原则的数据存储系统。

NoSQL具有以下特点:

1、可以弥补关系型数据库的不足

2、针对某些特定的需求而设计,可以具有极高的性能

3、大部分都是开源的,由于成熟度不够,存在潜在的稳定性和维护性问题。

关系型数据库适用于结构化数据,而非关系型数据库适用于非结构化数据,二者优势互补,相得益彰。

Oracle数据库未来的发展方向是提供结构化、非结构化、半结构化的解决方案,实现关系型数据库和NoSQL共存互补。值得强调的是,目前关系型数据库仍是主流数据库。

虽然NoSQL数据库打破了关系型数据库存储的观念,可以很好地满足WEB20时代数据的存储要求,但NoSQL数据库也有自己的缺陷。在现阶段的情况下,可以将关系型数据库和NoSQL数据库结合使用,相互弥补各自的不足。

关于数据库及其代表产品Oracle今天就介绍这么多,有兴趣的可以继续深挖,希望我的介绍能让你对数据库有一个更深入的认识。如果有志于在这方面发展的话,就让我们一起跟往事干杯从头再来。

作者:王慧贤

数据存储、数据分析、数据安全如今,围绕“数据”的话题越来越多,离人们的生活也越来越近。

从陌生到熟悉,数据不仅“出圈”,甚至已然站在了C位。去年,中央发布的《关于构建更加完善的要素市场化配置体制机制的意见》中明确表示,继土地、劳动力、资本、技术后,数据成为第五大生产要素。

步入信息化时代后,数据库、 *** 作系统与中间件作为计算机最基础的三大软件,支撑着企业的正常运行。

当数据成为生产要素后,必然会迎来爆发式增长,企业的数据存储和处理需求将进一步释放。更重要的是,疫情加快了数字化转型的脚步,更加速了企业的上云速度。

从信息化到数字化,时代的变革,总会带来商业世界的变化。如何在云原生架构下使用数据库,成为企业的痛点和云厂商的机会,亚马逊AWS的CTO Werner Vogels曾多次强调:“数据库是云计算的终极之战。”

在数智化时代,云原生到底意味着什么?云原生数据库和传统数据库相比,核心优势是什么?是否把数据库搬上云就是云原生?基于这些问题,雷锋网与阿里巴巴集团副总裁、阿里云数据库产品事业部负责人李飞飞展开一场对话。

国产云原生数据库,摆脱「切肤之痛」

如今,数据库的商业世界,因为云的出现与发展,分成了两大派系。

一派是以Oracle为代表的传统商用数据库,一派是以国外AWS、国内阿里云为代表的云原生数据库,去“IOE革命”下的产物。

其实,早期较为火热的数据库种类有三种,层次式数据库、网络式数据库和关系型数据库。

在《浪潮之巅》一书中,作者吴军写下了这样的观点:“Oracle 的兴起很大程度上靠的是它最早看到关系型数据库的市场前景,并且在商业模式上优于 IBM。”

因此,在云原生数据库“入世”之前,数据库的天下一直是Oracle的,国内大部分互联网公司都不得不采用Oracle+IBM小型机+EMC的模式来维持正常运营。

高昂的费用,使得对于数据库需求较大的互联网巨头“忍无可忍”。

2009年,阿里巴巴的Oracle RAC 集群节点数达到了创记录的20个。可由于Oracle并没有d性扩展的功能,只能按照峰值流量购买小型机和数据库,导致阿里将业务上涨带来的大部分利润,都支付给了Oracle。

第二年,阿里便开始走上了去“IOE”之路,根据开源MySQL搭建了AliSQL,并顺利经过了淘宝双11的考验,国产云原生数据库算是正式摆脱了“切肤之痛”,逐渐受到市场的真正认可。

另一边,国外的AWS在2015年公布了基于云计算的自研数据库Amazon Aurora。Aurora是一个关系型数据库,可以跨3个可用区域复制6份数据,其最大的特性就是高性能和高可用性。

云计算巨头的入局,让云原生数据库在国内外一步步成为主流。据Gartner预测,到了2021年,云数据库在整个数据库市场中的占比将首次达到50%,到2023年,75%的数据库都要跑在云平台之上。

关于云原生数据库,随着逐步的出圈,也让人们关心的焦点从“是啥?”转变为“还能解决哪些问题?”

但云原生数据库存在着数据孤岛的问题,无法打通多个数据系统的情况下,企业在数据加工和数据管理上就会“压力较大”,甚至在数据安全方面还存在隐患。

传统数据仓库一般基于T+1数据集成构建离线数仓,以支撑企业各项分析与服务。传统方案不但会影响线上业务稳定性,且难以支持企业的实时需求。

因此,在李飞飞看来,云原生数据库已经走到20阶段。这个阶段要解决的问题,就是上述存在的痛点。

9月26日,在阿里云数据库创新上云峰会上,阿里云发布了首个一站式敏捷数据仓库解决方案。该方案结合一站式数据管理平台DMS及云原生数据仓库AnalyticDB(简称:ADB),实现了库仓一体的技术架构,提供在线数据实时入仓、T+1周期性快照、按需建仓等能力,数据延时低至秒级,持续赋能业务在线化,使企业的在线数据可以释放出更大的价值。

相较于传统方案,阿里云一站式敏捷数据仓库解决方案有4大核心优势:

1、对业务侧影响小,不会因为数据汇聚集中和实时加工影响业务侧正常运行,CPU、内存占用低于5%;

2、事务顺序和数据准确性有保障,且处理链路短,支持在线数据实时处理落仓,效率更高。数据传输效率100m/s,数据延时在10秒内;

3、支持复杂实时数据加工、计算逻辑;

4、低代码 *** 作,能够大大降低实时数仓的构建难度,提升构建效率的同时,支撑企业数字化转型过程中的各类实时场景。

除了实时统计分析场景外,企业为满足周期性数据分析需求,需建设周期性全量快照。

传统数仓的周期性全量集成方案会对生产业务造成稳定性影响、全量集成时效性差、且无法满足客户针对任意时间点进行数据回溯的业务诉求。

针对T+1周期性集成场景,一站式敏捷数据仓库解决方案支持基于拉链表的T+1全量数据快照,用户通过简单几个步骤,即可按需生成各种周期的全量或增量快照。

此外,业务还可按需进行任意时间点的数据回溯,以快速解决数据异常问题。

谈起未来数据库的发展趋势,李飞飞提到以下五点:

1、云原生+分布式一定是数据库的标配,分布式已经是必选项。分布式数据库由多个相互连接的数据库组合而成,面向用户则是以单个数据库的形态出现。云原生分布式数据库具备易用性、高扩展性、快速迭代、节约成本等特征,从资源池化到d性扩展,再到智能运维,再到离在线一体化,解决企业用户的核心诉求。

2、AI for DB(database,指数据库)和 DB for AI 将是主流趋势。用AI将数据库运维管控智能化,尤其在云原生+分布式这个前提下更重要,因为数据库不仅是内核的能力d性高可用、可拓展性,更重要的是部署后应用和运维的复杂度要大大降低。在数据库里,面对越来越多非结构化的数据,分析能力十分重要。

3、数据的安全可信,在今天这个大环境下变得愈发重要,如何确保整个数据库系统,在处理数据全链路过程中提供加密能力、多方安全计算能力、隐私保护的能力,也是很重要的趋势。

4、多模数据处理能力将越来越重要。比如,新型数据库多模态的处理能力,在新能源 汽车 企业打标签、智能电池化预测等应用场景中,将发挥越来越重要的作用。

5、一份数据,多个数据处理引擎:实现仓库一体、仓库联动、仓库打通,数据之间无缝流转。

以上判断,也从侧面反映出阿里云数据库的走向,这点毋庸置疑。但除此之外,业界最关心的,还有开源。

近半年,国内很多厂商相继提出开源战略,背后缘由显而易见,为了打造生态。就在今年的阿里云峰会上,阿里云智能总裁、达摩院院长张建锋(花名行癫)将2021年阿里云的发展关键词归纳为:做好服务、做深基础、做厚中台、做强生态。

做好服务与生态,成为如今厂商们不约而同的目标,而开源,就是最好的选择。

当雷锋网问到:“未来,阿里云数据库会不会把所有能力都开源?”这一问题时,李飞飞给到的回答是:“不会。”

之所以有这样的回答,是因为对于开源,他有着一些判断和看法。

李飞飞表示,这些部分,本就是阿里云数据库的商业化版本。

事实上,业界大多数的数据库厂商都不会针对自身的核心能力开源,如TiDB的核心管控组件、TiFlash。

与像MongoDB,、Cassandra、CouchDB这些以开源起家的数据库厂商不同,开源只是阿里云数据库的战略,不是阿里云数据库的命脉。

前几年,有业内人士表示,在面向开源时,国产数据库首先需要解决信任以及开源知识产权等问题。“开源会让厂商更加认真思考版权还有专利的问题,事实上,选择开源后,对于数据库厂商提出了更高的要求。”

李飞飞认为,开源只是一种选择,数据库开源成功并不代表着商业化就能够成功,不开源也不能代表厂商不先进。

更准确的说,开源只是一种有效手段。

最终,阿里云数据库希望客户能够通过开源版本把阿里云数据库产品技术快速用起来,并能够参与到技术产品的迭代过程中,在一些高阶能力上,借鉴团队专业能力和阿里云的服务能力,成为良好的商业合作伙伴,这是李飞飞以及阿里云数据库对于开源的一些基本思考。雷锋网雷锋网雷锋网

一、摇篮和萌芽阶段:首先使用"DataBase"一词的是美国系统发展公司在为美国海军基地在60年代研制数据中引用。

1963年,C·W·Bachman设计开发的IDS(Integrate Data Store)系统开始投入运行,它可以为多个COBOL程序共享数据库。

1968年,网状数据库系统TOTAL等开始出现;

1969年,IBM公司Mc Gee等人开发的层次式数据库系统的IMS系统发表,它可以让多个程序共享数据库。

1969年10月,CODASYL数据库研制者提出了网络模型数据库系统规范报告DBTG,使数据库系统开始走向规范化和标准化。

正因为如此,许多专家认为数据库技术起源于20世纪60年代末。

数据库技术的产生来源于社会的实际需要,而数据技术的实现必须有理论作为指导,系统的开发和应用又不断地促进数据库理论的发展和完善。

二、发展阶段:20世纪80年代大量商品化的关系数据库系统问世并被广泛的推广使用,既有适应大型计算机系统的,也有适用与中、小型和微型计算机系统的。

这一时期分布式数据库系统也走向使用。

1970年,IBM公司San Jose研究所的E ·F ·Code发表了题为"大型共享数据库的数据关系模型"论文,开创了数据库的关系方法和关系规范化的理论研究。

关系方法由于其理论上的完美和结构上的简单,对数据库技术的发展起了至关重要的作用,成功地奠定了关系数据理论的基石。

1971年,美国数据系统语言协会在正式发表的DBTG报告中,提出了三级抽象模式,即对应用程序所需的那部分数据结构描述的外模式,对整个客体系统数据结构描述的概念模式,对数据存储结构描述的内模式,解决了数据独立性的问题。

1974年,IBM公司San Jose研究所研制成功了关系数据库管理系统System R,并且投放到软件市场。

1976年,美籍华人陈平山提出了数据库逻辑设计的实际(体)联系方法。

1978年,新奥尔良发表了DBDWD报告,他把数据库系统的设计过程划分为四个阶段:需求分析、信息分析与定义、逻辑设计和物理设计。

1980年,J·D·Ulman所著的《数据库系统原理》一书正式出版。

1981年 E· F· Code获得了计算机科学的最高奖ACM图林奖。

1984年,David Marer所著的《关系数据库理论》一书,标志着数据库在理论上的成熟。

三、成熟阶段:80年代至今,数据库理论和应用进入成熟发展时期 易观国际发布《IT产品和服务-2007年中国数据库软件市场数据监测》,考察了中国数据库管理软件市场。

数据显示,中国商业数据库市场2007年度整体规模达到2172亿人民币,比去年同期增长15%。

从厂商竞争格局来看,国际软件巨头占据市场的绝大多数份额。

Oracle、IBM、Microsoft和Sybase牢牢占据国内数据库软件市场前四位,拥有938%的市场份额。

国产数据库的市场份额在本季度继续提升,正在抓住国家提倡自主创新的机遇,以“有自主知识产权”的产品为契机,满足部委和地方 的信息整合平台需求。

2008年,中国商业数据库市场整体规模达到了2825亿元,比上个年度增长了30%,一方面,主要是因为中国电子政务建设的大幅增加,以及中国 对版权的高度重视。

其中,Oracle占据了其中44%的市场份额,IBM占据了其中20%的份额、微软占据了18%的份额,Sybase占据了10%,而国产数据库因为在 的支持下,已经占据了8%的市场份额,较2007年同比提升了25%。

其中,达梦数据库年销售额为6600万元,为国产数据库中市场份额最大的。

预计中国商业数据库市场在2009年达到31亿元的市场规模,同时,国产数据库在中国 鼓励自主创新的基础下,会占据更大的市场份额。

另外,包括Mysql等开源数据库也占据了大量的 及中小企事业用户,同时,盗版数据库更是占据了中国数据库市场的较大份额,其数值不亚于整个商业数据库的市场份额。

主要是金融、能源、军工等。

一级市场数据库为领先的国产加密数据库系统,其目标客户包括政府、金融、能源、军工、电信、医疗卫生、教育、社保、民生等,具有广阔的市场前景。

目标客户,专业术语,指企业提供产品和服务的对象。

以上就是关于一场替换传统数据库的行动正在全球范围悄然进行全部的内容,包括:一场替换传统数据库的行动正在全球范围悄然进行、什么是数据库营销的方式、数据库的发展趋势和发展前景等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9301086.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存