1、在 /lib/systemd/system 目录下创建名称为 mongodb 的服务(自定义服务名)
2、在 mongodbservice 中输入如下信息:
3、设置 mongodbservice 权限
至此,MongoDB服务配置完成~~
其中MongoDB的配置文件mongodconf的基本内容如下:
systemctl命令
参考:
>
ElasticSearch是基于Apache Lucene 的RESTful 实时搜索和分析引擎。ES基于数据抽取一些值,提供实时存储、索引、搜索和分析数据功能,这些数据收集自其他数据源(包括MongoDB),可以直接存储在Elasticsearch集群中。
一、共同点:
面向文档存储,无Schema,分布式数据存储,高可用性,分片和复制等。虽然使用ElasticSearch作为主数据存储是可行的,但一般做为主数据库的辅助数据库。
二、不同点:
1、Elasticsearch是java编写,通过RESTFul接口 *** 作数据。MongoDB是C++编写,通过driver *** 作数据。
2、MongoDB的分片有hash和range两种方式,Elasticsearch只有hash一种。
3、Elasticsearch是天生分布式,主副分片自动分配和复制,开箱即用。MongoDB的分布式是由“前置查询路由+配置服务+shard集合”,需要手动配置集群服务。
4、内部存储ES是倒排索引+docvalues+fielddata。
5、Elasticsearch全文检索有强大的分析器且可以灵活组合,查询时智能匹配。MongoDB的全文检索字段个数有限制。
6、Elasticsearch所有字段自动索引,MongoDB的字段需要手动索引。Elasticsearch 使用 Apache Lucene 实现索引,而 MongoDB 索引是基于传统的B+ 树结构。Elasticsearch利用Lucene实现实时索引和搜索功能,默认支持在文档的每个字段上创建索引。而 MongoDB,我们必须定义索引用于提升查询性能,但会影响写 *** 作。
7、Elasticsearch非实时有数据丢失窗口。mongodb实时理论上无数据丢失风险。
8、文档 - Elasticsearch 存储 JSON 文档, MongoDB 采用BSON格式存储 (Binary JSON)。
9、REST 接口 - Elasticsearch 提供 RESTful接口,MongoDB 不提供 RESTful接口。
10、MapReduce - MongoDB 支持 MapReduce 数据 *** 作。 Elasticsearch 不支持 MapReduce。
三、使用场景:
MongoDB是通用功能的非RESTful风格的 NoSQL 数据库 文档以 BSON 格式存储,主要用于存储数据。
Elasticsearch 是分布式全文检索引擎,可以提供实时Restful风格API处理海量面向文档的数据。文档使用JSON格式,主要用于基于文本的数据搜索。
在实际应用中两者通常同时使用,Elasticsearch一般不作为主存储数据库,而是和SQL & NoSQL数据库一起使用,作为辅助数据库。
与MongoDb不同, Elasticsearch 默认没有提供安全特性,如认证和授权。Elasticsearch和 Logstash & Kibana 一起称为ELK stack,用于快速查询数据并可视化展现分析数据。
Elasticsearch 非常适合需要基于文本进行快速索引然后进行检索,其查询速度非常快,大多数情况速度最多几十毫秒。
因此,Elasticsearch 通常作为主数据库存储的辅助存储库。一般数据库系统更聚焦于约束、准确性和健壮性。当主记录在事务中更新时,其会同时被推送至Elasticsearch中。
一般典型使用PostgreSQL 和 ZooKeeper 负责数据的存储, 同时提供给Elasticsearch实现实时检索。
没有万能的产品,没有一个数据库可以满足所有需求。所以我们需要了解不同数据库的优势和劣势,并选择合适的产品用于特定的需求。
创建Mongodb数据库
由于Mongodb不是关系型数据库文件,实际上,它并不存在传统关系型数据库中的所谓“数据库”的概念,但不用担心,当你第一次新增数据时,mongodb就会以collection集合的形式进行保存和新建,而不需要你手工去新建立。下面是例子:
1)列出当前的数据库
MongoDB shell version: 181
connecting to: test
> show dbs ->
1、启动Mongodb数据库。在自己电脑的E盘、D盘根目录模拟出两个Mongodb的数据库,分别代表旧库和新库。由于Mongodb的部署非常简单,数据文件分别在E:\mongodb\data\db(使用27017端口)和D:\mongodb\data\db(使用27117端口)下。具体如图。
2、连接新库查看其数据情况。通过Mongodb自带的客户端robomongo-100-rc1-windows-x86_64-496f5c2zip,解压后找到Robomongoexe,右击以管理员运行。左图所示界面,要求选择要连接的数据库。
3、连接旧库查看数据情况。同样通过客户端,连接旧库。如下图所示,旧数据库里面含有5条文档数据。下面我们就将旧库中的5条数据通过命令导出。
4、从旧库导出数据。分别导出fileschunks(保存有文档数据,二进制格式)和filesfiles(保存有文件信息),对于文档类数据两个需要分别导出。
5、导入数据到新库。同理,上一步导出的文件,要分别导入。
6、连接新库,查看数据情况。同样通过客户端,连接新库。如下图所示,我们发现5条文档数据已经导入进来。
mongodb本来是没有权限问题的,因为默认设置无用户无密码,
为了保障安全,需要手动设置一个账号和用户,这里不细谈如何创建有权限认证的mongodb账号(如mysql的root用户)
笔者用的是golang101+mongodb36,之前项目是不认证的程序,加了认证之后提示没有权限 *** 作
那么首先在
连接地址处加上用户和密码(马赛克处是密码)
运行单元测试发现,增查删改功能正常,但是
eval函数还是说我没有授权
看了官网文档说
需要grant一个anyAction on anyResource的user
参考于
解决办法如下:
登录mongodb,执行以下命令:
其中yourusername和yourpassword是自己设置的用户和密码(这个用户前提是已经有了root权限)
问题解决。
MongoDB是一款为web应用程序和互联网基础设施设计的数据库管理系统。没错MongoDB就是数据库,是NoSQL类型的数据库。
(1)MongoDB提出的是文档、集合的概念,使用BSON(类JSON)作为其数据模型结构,其结构是面向对象的而不是二维表,存储一个用户在MongoDB中是这样子的。
使用这样的数据模型,使得MongoDB能在生产环境中提供高读写的能力,吞吐量较于mysql等SQL数据库大大增强。
(2)易伸缩,自动故障转移。易伸缩指的是提供了分片能力,能对数据集进行分片,数据的存储压力分摊给多台服务器。自动故障转移是副本集的概念,MongoDB能检测主节点是否存活,当失活时能自动提升从节点为主节点,达到故障转移。
(3)数据模型因为是面向对象的,所以可以表示丰富的、有层级的数据结构,比如博客系统中能把“评论”直接怼到“文章“的文档中,而不必像myqsl一样创建三张表来描述这样的关系。
(1)文档数据类型
SQL类型的数据库是正规化的,可以通过主键或者外键的约束保证数据的完整性与唯一性,所以SQL类型的数据库常用于对数据完整性较高的系统。MongoDB在这一方面是不如SQL类型的数据库,且MongoDB没有固定的Schema,正因为MongoDB少了一些这样的约束条件,可以让数据的存储数据结构更灵活,存储速度更加快。
(2)即时查询能力
MongoDB保留了关系型数据库即时查询的能力,保留了索引(底层是基于B tree)的能力。这一点汲取了关系型数据库的优点,相比于同类型的NoSQL redis 并没有上述的能力。
(3)复制能力
MongoDB自身提供了副本集能将数据分布在多台机器上实现冗余,目的是可以提供自动故障转移、扩展读能力。
(4)速度与持久性
MongoDB的驱动实现一个写入语义 fire and forget ,即通过驱动调用写入时,可以立即得到返回得到成功的结果(即使是报错),这样让写入的速度更加快,当然会有一定的不安全性,完全依赖网络。
MongoDB提供了Journaling日志的概念,实际上像mysql的bin-log日志,当需要插入的时候会先往日志里面写入记录,再完成实际的数据 *** 作,这样如果出现停电,进程突然中断的情况,可以保障数据不会错误,可以通过修复功能读取Journaling日志进行修复。
(5)数据扩展
MongoDB使用分片技术对数据进行扩展,MongoDB能自动分片、自动转移分片里面的数据块,让每一个服务器里面存储的数据都是一样大小。
MongoDB核心服务器主要是通过mongod程序启动的,而且在启动时不需对MongoDB使用的内存进行配置,因为其设计哲学是内存管理最好是交给 *** 作系统,缺少内存配置是MongoDB的设计亮点,另外,还可通过mongos路由服务器使用分片功能。
MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包,方便各种语言的接入。
mongodump和mongorestore,备份和恢复数据库的标准工具。输出BSON格式,迁移数据库。
mongoexport和mongoimport,用来导入导出JSON、CSV和TSV数据,数据需要支持多格式时有用。mongoimport还能用与大数据集的初始导入,但是在导入前顺便还要注意一下,为了能充分利用好mongoDB通常需要对数据模型做一些调整。
mongosniff,网络嗅探工具,用来观察发送到数据库的 *** 作。基本就是把网络上传输的BSON转换为易于人们阅读的shell语句。
因此,可以总结得到,MongoDB结合键值存储和关系数据库的最好特性。因为简单,所以数据极快,而且相对容易伸缩还提供复杂查询机制的数据库。MongoDB需要跑在64位的服务器上面,且最好单独部署,因为是数据库,所以也需要对其进行热备、冷备处理。
因为本篇文章不是API手册,所有这里对shell的使用也是基础的介绍什么功能可以用什么语句,主要是为了展示使用MongoDB shell的方便性,如果需要知道具体的MongoDB shell语法可以查阅官方文档。
创建数据库并不是必须的 *** 作,数据库与集合只有在第一次插入文档时才会被创建,与对数据的动态处理方式是一致的。简化并加速开发过程,而且有利于动态分配命名空间。如果担心数据库或集合被意外创建,可以开启严格模式。
以上的命令只是简单实例,假设如果你之前没有学习过任何数据库语法,同时开始学sql查询语法和MongoDB 查询语法,你会发现哪一个更简单呢?如果你使用的是java驱动去 *** 作MongoDB,你会发现任何的查询都像Hibernate提供出来的查询方式一样,只要构建好一个查询条件对象,便能轻松查询(接下来会给出示例),博主之前熟悉ES6,所以入手MongoDB js shell完成没问题,也正因为这样简洁,完善的查询机制,深深的爱上了MongoDB。
使用java驱动链接MongoDB是一件非常简单的事情,简单的引用,简单的做增删改查。在使用完java驱动后我才发现spring 对MongoDB 的封装还不如官方自身提供出来的东西好用,下面简单的展示一下使用。
这里只举例了简单的链接与简单的MongoDB *** 作,可见其 *** 作的容易性。使用驱动时是基于TCP套接字与MongoDB进行通信的,如果查询结果较多,恰好无法全部放进第一服务器中,将会向服务器发送一个getmore指令获取下一批查询结果。
插入数据到服务器时间,不会等待服务器的响应,驱动会假设写入是成功的,实际是使用客户端生成对象id,但是该行为可以通过配置配置,可以通过安全模式开启,安全模式可以校验服务器端插入的错误。
要清楚了解MongoDB的基本数据单元。在关系型数据库中有带列和行的数据表。而MongoDB数据的基本单元是BSON文档,在键值中有指向不定类型值的键,MongoDB拥有即时查询,但不支持联结 *** 作,简单的键值存储只能根据单个键来获取值,不支持事务,但支持多种原子更新 *** 作。
如读写比是怎样的,需要何种查询,数据是如何更新的,会不会存在什么并发问题,数据结构化的程度是要求高还是低。系统本身的需求决定mysql还是MongoDB。
在关于schema 的设计中要注意一些原则,比如:
数据库是集合的逻辑与物理分组,MongoDB没有提供创建数据库的语法,只有在插入集合时,数据库才开始建立。创建数据库后会在磁盘分配一组数据文件,所有集合、索引和数据库的其他元数据都保存在这些文件中,查阅数据库使用磁盘状态可通过。
集合是结构上或概念上相似得文档的容器,集合的名称可以包含数字、字母或 符号,但必须以字母或数字开头,完全。
限定集合名不能超过128个字符,实际上 符号在集合中很有用,能提供某种虚拟命名空间,这是一种组织上的原则,和其他集合是一视同仁的。在集合中可以使用。
其次是键值,在MongoDB里面所有的字符串都是UTF-8类型。数字类型包括double、int、long。日期类型都是UTC格式,所以在MongoDB里面看到的时间会比北京时间慢8小时。整个文档大小会限制在16m以内,因为这样可以防止创建难看的数据类型,且小文档可以提升性能,批量插入文档理想数字范围是10~200,大小不能超过16MB。
(1)索引能显著减少获取文档的所需工作量,具体的对比可以通过 explain()方法进行对比
(2)解析查询时MongoDB通过最优计划选择一个索引进行查询,当没有最适合索引时,会先不同的使用各个索引进行查询,最终选出一个最优索引做查询
(3)如果有一个a-b的复合索引,那么仅针对a的索引是冗余的
(4)复合索引里的键的顺序是很重要的
(1)单键索引
(2)复合索引
(3)唯一性索引
(4)稀疏索引
如索引的字段会出现null的值,或是大量文档都不包含被索引的键。
如果数据集很大时,构建索引将会花费很长的时间,且会影响程序性能,可通过
当使用 mongorestore 时会重新构建索引。当曾经执行过大规模的删除时,可使用
对索引进行压缩,重建。
(1)查阅慢查询日志
(2)分析慢查询
注意新版本的MongoDB 的explain方法是需要参数的,不然只显示普通的信息。
本节同样主要简单呈现MongoDB副本集搭建的简易性,与副本集的强壮性,监控容易性
提供主从复制能力,热备能力,故障转移能力
实际上MongoDB对副本集的 *** 作跟mysql主从 *** 作是差不多的,先看一下mysql的主从数据流动过程
而MongoDB主要依赖的日志文件是oplog
写 *** 作先被记录下来,添加到主节点的oplog里。与此同时,所有从结点复制oplog。首先,查看自己oplog里最后一条的时间戳;其次,查询主节点oplog里所有大于此时间戳的条目;最后,把那些条目添加到自己的oplog里并应用到自己的库里。从节点使用长轮询立即应用来自主结点oplog的新条目。
当遇到以下情况,从节点会停止复制
local数据库保存了所有副本集元素据和oplog日志
可以使用以下命令查看复制情况
每个副本集成员每秒钟ping一次其他所有成员,可以通过rsstatus()看到节点上次的心跳检测时间戳和 健康 状况。
这个点没必要过多描述,但是有一个特殊场景,如果从节点和仲裁节点都被杀了,只剩下主节点,他会把自己降级成为从节点。
如果主节点的数据还没有写到从库,那么数据不能算提交,当该主节点变成从节点时,便会触发回滚,那些没写到从库的数据将会被删除,可以通过rollback子目录中的BSON文件恢复回滚的内容。
(1)使用单节点链接
只能链接到主节点,如果链接到从节点的话,会被拒绝写入 *** 作,但是如果没有使用安全模式,因为mongo的fire and forget 特性,会把拒绝写入的异常给吃掉。
(2)使用副本集方式链接
能根据写入的情况自动进行故障转移,但是当副本集进行新的选举时,还是会出现故障,如果不使用安全模式,依旧会出现写不进去,但现实成功的情况。
分片是数据库切分的一个概念实现,这里也是简单总结为什么要使用分片以及分片的原理, *** 作。
当数据量过大,索引和工作数据集占用的内存就会越来越多,所以需要通过分片负载来解决这个问题
(1)分片组件
(2)分片的核心 *** 作
分片一个集合:分片是根据一个属性的范围进行划分的,MongoDB使用所谓的分片键让每个文档在这些范围里找到自己的位置
块:是位于一个分片中的一段连续的分片键范围,可以理解为若干个块组成分片,分片组成MongoDB的全部数据
(3)拆分与迁移
块的拆分:初始化时只有一个块,达到最大块尺寸64MB或100000个文档就会触发块的拆分。把原来的范围一分为二,这样就有了两个块,每个块都有相同数量的文档。
迁移:当分片中的数据大小不一时会产生迁移的动作,比如分片A的数据比较多,会将分片A里面的一些块转移到分片B里面去。分片集群通过在分片中移动块来实现均衡,是由名为均衡器的软件进程管理的,任务是确保数据在各个分片中保持均匀分布,当集群中拥有块最多的分片与拥有块最少分片的块差大于8时,均衡器就会发起一次均衡处理。
启动两个副本集、三个配置服务器、一个mongos进程
配置分片
(1)分片查询类型
(2)索引
分片集合只允许在_id字段和分片键上添加唯一性索引,其他地方不行,因为这需要在分片间进行通信,实施起来很复杂。
当创建分片时,会根据分片键创建一个索引。
(1)分片键是不可修改的、分片键的选择非常重要
(2)低效的分片键
(3)理想的分片键
(1)部署拓扑
根据不同的数据中心划分
这里写描述
(2)最低要求
(3)配置的注意事项
需要估计集群大小,可使用以下命令对现有集合进行分片处理
(4)备份分片集群
备份分片时需要停止均衡器
(1)部署架构
使用64位机器、32位机器会制约mongodb的内存,使其最大值为15GB
(2)cpu
mongodb 只有当索引和工作集都可放入内存时,才会遇到CPU瓶颈,CPU在mongodb使用中的作用是用来检索数据,如果看到CPU使用饱和的情况,可以通过查询慢查询日志,排查是不是查询的问题导致的,如果是可以通过添加索引来解决问题
mongodb写入数据时会使用到CPU,但是mongodb写入时间一次只用到一个核,如果有频繁的写入行为,可以通过分片来解决这个问题
(3)内存
大内存是mongodb的保障,如果工作集大小超过内存,将会导致性能下降,因为这将会增加数据加载入内存的动作
(4)硬盘
mongodb默认每60s会与磁盘强制同步一次,称为后台刷新,会产生I/O *** 作。在重启时mongodb会将磁盘里面的数据加载至内存,高速磁盘将会减少同步的时间
(5)文件系统
使用ext4 和 xfs 文件系统
禁用最后访问时间
(6)文件描述符
linux 默认文件描述符是1024,需要大额度的提升这个额度
(7)时钟
mongodb各个节点服务器之间使用ntp服务器
(1)绑定IP
启动时使用 - -bind_ip 命令
(2)身份验证
启动时使用 - -auth 命令
(3)副本集身份认证
使用keyFile,注意keyFile文件的权限必须是600,不然会启动不起来
(1)拓扑结构
搭建副本集至少需要两个节点,其中仲裁结点不需要有自己的服务器
(2)Journaling日志
写数据时会先写入日志,而此时的数据也不是直接写入硬盘,而是写入内存
但是Journaling日志会消耗内存,所以可以在主库上面关闭,在从库上面启动
可以单独为Journaling日志使用一块固态硬盘
在插入时,可以通过驱动确保Journaling插入后再反馈,但是会非常影响性能。
logpath 选项指定日志存储地址
-vvvvv 选项(v越多,输出越详细)
dbrunCommand({logrotare:1}) 开启滚动日志
(1)serverStatus
这里写描述
(2)top
(3)dbcurrentOp()
动态展示mongodb活动数据
占用当前mongodb监听端口往上1000号的端口
(1)mongodump
把数据库内容导出成BSON文件,而mongorestore能读取并还原这些文件
(2)mongorestore
把导出的BSON文件还原到数据库
(3)备份原始数据文件
可以这么做,但是, *** 作之前需要进行锁库处理 dbrunCommand({fsync:1,lock:true})
db$cmdsysunlockfindOne() 请求解锁 *** 作,但是数据库不会立刻解锁,需要使用dbcurrentOp()验证。
(1)修复
mongd --repair 修复所有数据库
dbrunCommand({repairDatabase:1}) 修复单个数据库
修复就是根据Jourling文件读取和重写所有数据文件并重建各个索引
(2)压紧
压紧,会重写数据文件,并重建集合的全部索引,需要停机或者在从库上面运行,如果需要在主库上面运行,需要添加force参数 保证加写锁。
(1)监控磁盘状态
(2)为提升性能检查索引和查询
总的来说,扫描尽可能少的文档。
保证没有冗余的索引,冗余的索引会占用磁盘空间、消耗更多的内存,在每次写入时还需做更多工作
(3)添加内存
dataSize 数据大小 和 indexSize 索引大小,如果两者的和大于内存,那么将会影响性能。
storageSize超过dataSize 数据大小 两倍以上,就会因磁盘碎片而影响性能,需要压缩。
由于工作需要在本地安装mongodb用作调试,在安装过程中遇到了问题,记录一下。
首先看看安装成功的mongodb吧:
我的系统是Manjaro,基于archlinux的系统。由于MongoDB修改了软件授权协议,所以在archlinux的官方源中已经删除了MongoDB,在archlinux的wiki中建议安装AUR中的mongodb-bin,或者自己编译(需要180G的空余的磁盘空间)。脑阔疼,我没有配置AUR的源,自己编译的话,我这老爷机谁知道要编译多久,所以最后我选择了使用 MongoDB官网 提供的软件包。
下面是安装过程:
当然也可以选择配置AUR源来安装,但是我懒得配置,而且自己一般也不会用到AUR,所以就只介绍这一种方法了。
启动的话可以选择使用下面的命令来后台执行
本文最先发布于: SavingUnhappy
以上就是关于Centos7配置MongodDB服务全部的内容,包括:Centos7配置MongodDB服务、为什么mongodb不能替代elasticsearch区别、如何在ssh创建mongodb服务等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)