内存数据库从范型上可以分为关系型内存数据库和键值型内存数据库。
在实际应用中内存数据库主要是配合oracle或mysql等大型关系数据库使用,关注性能。
作用类似于缓存,并不注重数据完整性和数据一致性。
基于键值型的内存数据库比关系型更加易于使用,性能和可扩展性更好,因此在应用上比关系型的内存数据库使用更多。
比较FastDB、Memcached和Redis主流内存数据库的功能特性。
FastDB的特点包括如下方面:
1、FastDB不支持client-server架构因而所有使用FastDB的应用程序必须运行在同一主机上;
2、fastdb假定整个数据库存在于RAM中,并且依据这个假定优化了查询算法和接口。
3、fastdb没有数据库缓冲管理开销,不需要在数据库文件和缓冲池之间传输数据。
4、整个fastdb的搜索算法和结构是建立在假定所有的数据都存在于内存中的,因此数据换出的效率不会很高。
5、Fastdb支持事务、在线备份以及系统崩溃后的自动恢复。
6、fastdb是一个面向应用的数据库,数据库表通过应用程序的类信息来构造。
FastDB不能支持Java API接口,这使得在本应用下不适合使用FastDB。
Memcached
Memcached是一种基于Key-Value开源缓存服务器系统,主要用做数据库的数据高速缓冲,并不能完全称为数据库。
memcached的API使用三十二位元的循环冗余校验(CRC-32)计算键值后,将资料分散在不同的机器上。当表格满了以后,接下来新增的资料会以LRU机制替换掉。由于 memcached通常只是当作缓存系统使用,所以使用memcached的应用程式在写回较慢的系统时(像是后端的数据库)需要额外的程序更新memcached内的资料。
memcached具有多种语言的客户端开发包,包括:Perl、PHP、JAVA、C、Python、Ruby、C#。
Redis
Redis是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部分场合可以对关系数据库起到很好的补充作用。它提供了C++、Java、Python,Ruby,Erlang,PHP客户端。
通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。
因为Redis的性能十分优越,可以支持每秒十几万此的读/写 *** 作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:
缓存
判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写 *** 作多么?数据大小?
我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意缓存穿透的问题。
缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行 *** 作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。
高速读写
常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。
高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。
这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。
所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。
我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。
Redis和MySQL的应用场景是不同的。
通常来说,没有说用Redis就不用MySQL的这种情况。
因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。
和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)
那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。
我们先来了解一下关系型数据库和非关系型数据库的区别吧。
1存储方式关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。
2存储结构关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。
3存储规范关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个 *** 作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写
4存储扩展这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中, *** 作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。
5查询方式关系型数据库通过结构化查询语言来 *** 作数据库(就是我们通常说的SQL)。SQL支持数据库CURD *** 作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元 *** 作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询 *** 作,而Nosql更简单更精确的数据访问模式。
6事务关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。
7性能关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。
8授权方式大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。
所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。
查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。
而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。
即使Redis的读取效率再高,我们也没法用。
但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。
例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。
所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。
个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。
为什么?
因为redis是内存型数据库啊,是放在内存里的。
设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!
使用场景Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。
例如facebook,使用Memcached来作为其会话缓存。
总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。
题主你错了,不是用redis代替MySQL,而是引入redis来优化。
BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。
如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。
我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过>
1什么是Redis一款内存高速缓存数据库(全称远程数据服务);使用C语言编写Redis是一个key-value存储系统,它支持丰富的数据类型,如:string、list、set、zset(sortedset)、hash等2Redis特点Redis以内存作为数据存储介质,所以读写数据的效率极高,远远超过数据库。以设置和获取一个256字节字符串为例,它的读取速度可高达110000次/s,写速度高达81000次/s。储存在Redis中的数据是持久化的,断电或重启后,数据也不会丢失。-----Redis的存储分为内存存储、磁盘存储和log文件三部分,重启后,Redis可以从磁盘重新将数据加载到内存中。(实现持久化)3Redis应用场景,它能做什么在服务器中常用来存储一些需要频繁调取的数据,这样可以大大节省系统直接读取磁盘来获得数据的I/O开销,更重要的是可以极大提升速度。(拿大型网站来举个例子,比如a网站首页一天有100万人访问,其中有一个板块为推荐新闻。要是直接从数据库查询,那么一天就要多消耗100万次数据库请求。上面已经说过,Redis支持丰富的数据类型,所以这完全可以用Redis来完成,将这种热点数据存到Redis(内存)中,要用的时候,直接从内存取,极大的提高了速度和节约了服务器的开销。)使用Redis有哪些好处?(1)速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和 *** 作的时间复杂度都是O(1)(2)支持丰富数据类型,支持string,list,set,sortedset,hash(3)支持事务, *** 作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行(4)丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除redis相比memcached有哪些优势?(1)memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型(2)redis的速度比memcached快很多(3)redis可以持久化其数据redis常见性能问题和解决方案:(1)Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件(2)如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次(3)为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内(4)尽量避免在压力很大的主库上增加从库(5)主从复制不要用图状结构,用单向链表结构更为稳定4redis和mysql的区别总结(1)类型上从类型上来说,mysql是关系型数据库,redis是缓存数据库(2)作用上mysql用于持久化的存储数据到硬盘,功能强大,但是速度较慢redis用于存储使用较为频繁的数据到缓存中,读取速度快(3)需求上mysql和redis因为需求的不同,一般都是配合使用。5redis和mysql要根据具体业务场景去选型redis和mysql要根据具体业务场景去选型mysql:数据放在磁盘redis:数据放在内存mysql支持sql查询,可以实现一些关联的查询以及统计;redis对内存要求比较高,在有限的条件下不能把所有数据都放在redis;mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据
Redis作为内存数据库,拥有非常高的性能,单个实例的QPS能够达到10W左右。但我们在使用Redis时,经常时不时会出现访问延迟很大的情况,如果你不知道Redis的内部实现原理,在排查问题时就会一头雾水。
很多时候,Redis出现访问延迟变大,都与我们的使用不当或运维不合理导致的。
下面我们就来分析一下Redis在使用过程中,经常会遇到的延迟问题以及如何定位和分析。
如果在使用Redis时,发现访问延迟突然增大,如何进行排查?
首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。
首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近1000条慢日志记录:
# 命令执行超过5毫秒记录慢日志
CONFIG SET slowlog-log-slower-than 5000
# 只保留最近1000条慢日志
CONFIG SET slowlog-max-len 1000
设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5查询最近5条慢日志:
127001:6379> SLOWLOG get 5
1) 1) (integer) 32693 # 慢日志ID
2) (integer) 1593763337 # 执行时间
3) (integer) 5299 # 执行耗时(微妙)
4) 1) 'LRANGE' # 具体执行的命令和参数
2) 'user_list_2000'
3) '0'
4) '-1'
2) 1) (integer) 32692
2) (integer) 1593763337
3) (integer) 5044
4) 1) 'GET'
2) 'book_price_1000'
通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时, 如果你的业务经常使用O(n)以上复杂度的命令, 例如sort、sunion、zunionstore,或者在执行O(n)命令时 *** 作的数据量比较大,这些情况下Redis处理数据时就会很耗时。
如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。
解决方案就是,不使用这些复杂度较高的命令,并且一次不要获取太多的数据,每次尽量 *** 作少量的数据,让Redis可以及时处理返回。
如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET、DELETE *** 作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。
Redis在写入数据时,需要为新的数据分配内存,当从Redis中删除数据时,它会释放对应的内存空间。
如果一个key写入的数据非常大,Redis 在分配内存时也会比较耗时。 同样的,当删除这个key的数据时, 释放内存也会耗时比较久。
你需要检查你的业务代码,是否存在写入大key的情况,需要评估写入数据量的大小,业务层应该避免一个key存入过大的数据量。
那么有没有什么办法可以扫描现在Redis中是否存在大key的数据吗?
Redis也提供了扫描大key的方法:
redis-cli -h $host -p $port --bigkeys -i 001
使用上面的命令就可以扫描出整个实例key大小的分布情况,它是以类型维度来展示的。
需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用-i参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。
使用这个命令的原理,其实就是Redis在内部执行scan命令,遍历所有key,然后针对不同类型的key执行strlen、llen、hlen、scard、zcard来获取字符串的长度以及容器类型(list/dict/set/zset)的元素个数。
而对于容器类型的key,只能扫描出元素最多的key,但元素最多的key不一定占用内存最多,这一点需要我们注意下。不过使用这个命令一般我们是可以对整个实例中key的分布情况有比较清晰的了解。
针对大key的问题,Redis官方在40版本推出了lazy-free的机制,用于异步释放大key的内存,降低对Redis性能的影响。即使这样,我们也不建议使用大key,大key在集群的迁移过程中,也会影响到迁移的性能,这个后面在介绍集群相关的文章时,会再详细介绍到。
有时你会发现,平时在使用Redis时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且 报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。
如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。
如果有大量的key在某个固定时间点集中过期,在这个时间点访问Redis时,就有可能导致延迟增加。
Redis的过期策略采用主动过期+懒惰过期两种策略:
注意, Redis的主动过期的定时任务,也是在Redis主线程中执行的 ,也就是说如果在执行主动过期的过程中,出现了需要大量删除过期key的情况,那么在业务访问时,必须等这个过期任务执行结束,才可以处理业务请求。此时就会出现,业务访问延时增大的问题,最大延迟为25毫秒。
而且这个访问延迟的情况, 不会记录在慢日志里。 慢日志中 只记录真正执行某个命令的耗时 ,Redis主动过期策略执行在 *** 作命令之前,如果 *** 作命令耗时达不到慢日志阈值,它是不会计算在慢日志统计中的,但我们的业务却感到了延迟增大。
此时你需要检查你的业务,是否真的存在集中过期的代码,一般集中过期使用的命令是expireat或pexpireat命令,在代码中搜索这个关键字就可以了。
如果你的业务确实需要集中过期掉某些key,又不想导致Redis发生抖动,有什么优化方案?
解决方案是, 在集中过期时增加一个随机时间,把这些需要过期的key的时间打散即可。
伪代码可以这么写:
# 在过期时间点之后的5分钟内随机过期掉
redisexpireat(key, expire_time + random(300))
这样Redis在处理过期时,不会因为集中删除key导致压力过大,阻塞主线程。
另外,除了业务使用需要注意此问题之外,还可以通过运维手段来及时发现这种情况。
我们需要对这个指标监控,当在 很短时间内这个指标出现突增 时,需要及时报警出来,然后与业务报慢的时间点对比分析,确认时间是否一致,如果一致,则可以认为确实是因为这个原因导致的延迟增大。
有时我们把Redis当做纯缓存使用,就会给实例设置一个内存上限maxmemory,然后开启LRU淘汰策略。
当实例的内存达到了maxmemory后,你会发现之后的每次写入新的数据,有可能变慢了。
导致变慢的原因是,当Redis内存达到maxmemory后,每次写入新的数据之前,必须先踢出一部分数据,让内存维持在maxmemory之下。
这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于配置的淘汰策略:
具体使用哪种策略,需要根据业务场景来决定。
我们最常使用的一般是allkeys-lru或volatile-lru策略,它们的处理逻辑是,每次从实例中随机取出一批key(可配置),然后淘汰一个最少访问的key,之后把剩下的key暂存到一个池子中,继续随机取出一批key,并与之前池子中的key比较,再淘汰一个最少访问的key。以此循环,直到内存降到maxmemory之下。
如果使用的是allkeys-random或volatile-random策略,那么就会快很多,因为是随机淘汰,那么就少了比较key访问频率时间的消耗了,随机拿出一批key后直接淘汰即可,因此这个策略要比上面的LRU策略执行快一些。
但以上这些逻辑都是在访问Redis时,真正命令执行之前执行的,也就是它会影响我们访问Redis时执行的命令。
另外,如果此时Redis实例中有存储大key,那么在淘汰大key释放内存时,这个耗时会更加久,延迟更大,这需要我们格外注意。
如果你的业务访问量非常大,并且必须设置maxmemory限制实例的内存上限,同时面临淘汰key导致延迟增大的的情况,要想缓解这种情况,除了上面说的避免存储大key、使用随机淘汰策略之外,也可以考虑拆分实例的方法来缓解,拆分实例可以把一个实例淘汰key的压力分摊到多个实例上,可以在一定程度降低延迟。
如果你的Redis开启了自动生成RDB和AOF重写功能,那么有可能在后台生成RDB和AOF重写时导致Redis的访问延迟增大,而等这些任务执行完毕后,延迟情况消失。
遇到这种情况,一般就是执行生成RDB和AOF重写任务导致的。
生成RDB和AOF都需要父进程fork出一个子进程进行数据的持久化,在fork执行过程中,父进程需要拷贝内存页表给子进程,如果整个实例内存占用很大,那么需要拷贝的内存页表会比较耗时,此过程会消耗大量的CPU资源,在完成fork之前,整个实例会被阻塞住,无法处理任何请求,如果此时CPU资源紧张,那么fork的时间会更长,甚至达到秒级。这会严重影响Redis的性能。
具体原理也可以参考我之前写的文章:Redis持久化是如何做的?RDB和AOF对比分析。
我们可以执行info命令,查看最后一次fork执行的耗时latest_fork_usec,单位微妙。这个时间就是整个实例阻塞无法处理请求的时间。
除了因为备份的原因生成RDB之外,在 主从节点第一次建立数据同步时 ,主节点也会生成RDB文件给从节点进行一次全量同步,这时也会对Redis产生性能影响。
要想避免这种情况,我们需要规划好数据备份的周期,建议 在从节点上执行备份,而且最好放在低峰期执行。 如果对于丢失数据不敏感的业务,那么不建议开启AOF和AOF重写功能。
另外,fork的耗时也与系统有关,如果把Redis部署在虚拟机上,那么这个时间也会增大。所以使用Redis时建议部署在物理机上,降低fork的影响。
很多时候,我们在部署服务时,为了提高性能,降低程序在使用多个CPU时上下文切换的性能损耗,一般会采用进程绑定CPU的 *** 作。
但在使用Redis时,我们不建议这么干,原因如下。
绑定CPU的Redis,在进行数据持久化时,fork出的子进程,子进程会继承父进程的CPU使用偏好,而此时子进程会消耗大量的CPU资源进行数据持久化,子进程会与主进程发生CPU争抢,这也会导致主进程的CPU资源不足访问延迟增大。
所以在部署Redis进程时,如果需要开启RDB和AOF重写机制,一定不能进行CPU绑定 *** 作!
上面提到了,当执行AOF文件重写时会因为fork执行耗时导致Redis延迟增大,除了这个之外,如果开启AOF机制,设置的策略不合理,也会导致性能问题。
开启AOF后,Redis会把写入的命令实时写入到文件中,但写入文件的过程是先写入内存,等内存中的数据超过一定阈值或达到一定时间后,内存中的内容才会被真正写入到磁盘中。
AOF为了保证文件写入磁盘的安全性,提供了3种刷盘机制:
当使用第一种机制appendfsync always时,Redis每处理一次写命令,都会把这个命令写入磁盘,而且 这个 *** 作是在主线程中执行的。
内存中的的数据写入磁盘,这个会加重磁盘的IO负担, *** 作磁盘成本要比 *** 作内存的代价大得多。如果写入量很大,那么每次更新都会写入磁盘,此时机器的磁盘IO就会非常高,拖慢Redis的性能,因此我们不建议使用这种机制。
与第一种机制对比,appendfsync everysec会每隔1秒刷盘,而appendfsync no取决于 *** 作系统的刷盘时间,安全性不高。因此我们推荐使用appendfsync everysec这种方式,在最坏的情况下,只会丢失1秒的数据,但它能保持较好的访问性能。
当然,对于有些业务场景,对丢失数据并不敏感,也可以不开启AOF。
如果你发现Redis突然变得非常慢, 每次访问的耗时都达到了几百毫秒甚至秒级 ,那此时就检查Redis是否使用到了Swap,这种情况下Redis基本上已经无法提供高性能的服务。
我们知道, *** 作系统提供了Swap机制,目的是为了当内存不足时,可以把一部分内存中的数据换到磁盘上,以达到对内存使用的缓冲。
但当内存中的数据被换到磁盘上后,访问这些数据就需要从磁盘中读取,这个速度要比内存慢太多!
尤其是针对Redis这种高性能的内存数据库来说,如果Redis中的内存被换到磁盘上,对于Redis这种性能极其敏感的数据库,这个 *** 作时间是无法接受的。
我们需要检查机器的内存使用情况,确认是否确实是因为内存不足导致使用到了Swap。
如果确实使用到了Swap,要及时整理内存空间,释放出足够的内存供Redis使用,然后释放Redis的Swap,让Redis重新使用内存。
释放Redis的Swap过程通常要重启实例,为了避免重启实例对业务的影响,一般先进行主从切换,然后释放旧主节点的Swap,重新启动服务,待数据同步完成后,再切换回主节点即可。
可见,当Redis使用到Swap后,此时的Redis的高性能基本被废掉,所以我们需要提前预防这种情况。
我们需要对Redis机器的内存和Swap使用情况进行监控,在内存不足和使用到Swap时及时报警出来,及时进行相应的处理。
如果以上产生性能问题的场景,你都规避掉了,而且Redis也稳定运行了很长时间,但在某个时间点之后开始,访问Redis开始变慢了,而且一直持续到现在,这种情况是什么原因导致的?
之前我们就遇到这种问题, 特点就是从某个时间点之后就开始变慢,并且一直持续。 这时你需要检查一下机器的网卡流量,是否存在网卡流量被跑满的情况。
网卡负载过高,在网络层和TCP层就会出现数据发送延迟、数据丢包等情况。Redis的高性能除了内存之外,就在于网络IO,请求量突增会导致网卡负载变高。
如果出现这种情况,你需要排查这个机器上的哪个Redis实例的流量过大占满了网络带宽,然后确认流量突增是否属于业务正常情况,如果属于那就需要及时扩容或迁移实例,避免这个机器的其他实例受到影响。
运维层面,我们需要对机器的各项指标增加监控,包括网络流量,在达到阈值时提前报警,及时与业务确认并扩容。
以上我们总结了Redis中常见的可能导致延迟增大甚至阻塞的场景,这其中既涉及到了业务的使用问题,也涉及到Redis的运维问题。
可见,要想保证Redis高性能的运行,其中涉及到CPU、内存、网络,甚至磁盘的方方面面,其中还包括 *** 作系统的相关特性的使用。
作为开发人员,我们需要了解Redis的运行机制,例如各个命令的执行时间复杂度、数据过期策略、数据淘汰策略等,使用合理的命令,并结合业务场景进行优化。
作为DBA运维人员,需要了解数据持久化、 *** 作系统fork原理、Swap机制等,并对Redis的容量进行合理规划,预留足够的机器资源,对机器做好完善的监控,才能保证Redis的稳定运行。
在上文中,主要讲解了 Redis 常见的导致变慢的场景以及问题定位和分析,主要是由业务使用不合理和运维不当导致的。
linux下性能和稳定性较好,apache+php+mysql是最佳组合,再加上phpmyadmin管理数据库,要比sql简介不少。从漏洞和磁盘运行的状态,linux要比windows下优异的多。在linux下无论从安装到配置到定制,很容易上手。
以上就是关于redis与timesten哪个好全部的内容,包括:redis与timesten哪个好、数据多的时候为什么要使用redis而不用mysql、redis什么类型数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)