温雪茹 刘 冰 李银罗 翟国平
(中国地质科学院水文地质环境地质研究所)
摘 要 信息服务已成为 21 世纪各国地质工作的战略重点。本文对我国地质信息服务体系现状进行了深入的研究和分析,指出了存在的主要不足,并且对我国将要建立的地质数据集群系统做出了展望,指出应当在实现一站式服务的前提下,实现六个方面的主要功能,包括:完整的地质信息资源目录、丰富的网络在线资源、强大的信息加工处理和分析能力等。
关键词 地质资料 地质信息 信息服务 集群化
1 引言
地质信息是地质工作的主要成果,是广大地质工作者在基础地质调查、矿产勘查、环境(灾害)地质调查、海洋地质调查和地质科学研究过程中辛勤劳动的结晶,是对地球的物质组成、结构、构造及演化规律的认识和知识。地质信息是地质工作服务于经济社会发展的主要载体,是国土资源调查、规划、管理、保护、合理利用和国家重大工程建设的重要基础信息资源,对于缓解资源约束、保障经济发展、推进城乡建设、开展国土整治、防治地质灾害、改善人居环境等都具有重要的利用价值。
地质资料是地质信息的主体,指在地质工作中所形成的以文字、数据、符号、图形、图像、声音等方式记载的纸介质、存储介质,以及岩心、标本、样品、光薄片等相关实物。地质资料是对地质工作过程及成果的记录,具体包括成果地质资料、原始地质资料、图书期刊、实物地质资料和数据库等。
地质信息服务是主要以地质数据、信息和知识的提供与传播、地质信息处理以及提供软件服务为主要内容的信息服务[1]。进入 21 世纪以来,信息服务已成为各国地质工作的战略重点[2]。
目前全国地质资料馆、各省地质资料馆藏机构、六大地调中心和各省地调院以及广州海洋地质调查局、青岛海洋地质研究所、中国地质科学院、中国地质环境监测院、中国国土资源航空物探遥感中心、中国地质图书馆等单位构成了中国地质信息服务提供者的主体[3]。2011 年全国部、省两级地质资料馆藏机构的资源总量达 403 万种[4],中国地质图书馆国内外地学文献资源量为 60 万卷(册),全国实物地质资料中心库存岩心长度150745米,标本10992块(数据来源于中国地质图书馆、中国实物地质资料信息网站)。目前我国地质信息服务现状是传统与现代并存、以传统为主的方式;存在的问题,主要表现在资源分散、数字化比例小、共享程度低、信息产品深度加工不够等方面。因而,中国地质调查局于 2010 年 3 月 1 日在全国地质调查工作会议上正式提出要加强“地质资料信息服务集群化产业化”。地质资料信息服务集群化,就是通过构建共享机制、搭建共享平台,汇集、整理、挖掘地质资料信息产品,延伸产品链,提供服务集中度,提高服务规模效益的过程[4],将实现领域内应用层面的互通互联、资源共享和协同工作。
2 地质信息服务方式
21 传统服务方式
传统方式表现为借阅人到馆藏机构获取资料的模式。借阅人通过目录检索或者卡片检索,查询到所需资料后,需要到馆藏机构提取纸质资料阅览或复印或拷贝电子数据。网络目录检索和电子阅览室,在借阅过程中能够起一定的辅助作用,但没有从根本上改变传统模式。在传统信息服务方式中,信息服务提供者各自开展服务。客户为解决一个问题,常常需要从分布在不同位置的提供者处分别获得所需服务[5]。
22 现代服务方式
现代服务方式主要应用 WEBGIS、网格、数据库等先进技术,使用户能够便利地获取地质信息,主要包括信息提供服务、信息处理服务、软件提供服务,以及基于知识的咨询服务等。它的主要特点是用户通过运行在互联网上的系统,即可在任何位置上快速实现对所需信息的查找、浏览、评价、获取和利用,并不需要关心信息的存放位置。
221 集成的信息产品服务
中国地质调查局在“十五”初期开始实施我国基础地学数据库体系建设计划。该体系包括基础地学数据库和综合成果数据库两大部分,共 30 余个数据库,主要包括[6]:
(1)区域地质图数据库
全国 1∶5 万地质图空间数据库,全国 1∶20 万地质图空间数据库,全国 1∶25 万地质图空间数据库,全国 1∶50 万地质图空间数据库,全国 1∶250 万地质图空间数据库,全国 1∶500 万地质图空间数据库。
(2)区域水文地质图空间数据库
全国1∶5万重点城市及经济开发区水工环综合地质数据库,全国1∶20万数字水文地质图空间数据库,全国 1∶600 万水工环地质图数据库,全国小比例尺数字水工环空间数据库,地下水资源动态监测数据库。
(3)基础地质数据数据库
中国地层数据库,全国 1∶20 万自然重砂数据库,全国同位素地质测年数据库,全国岩石数据库(试建库)。
(4)全国矿产地数据库
原地矿系统矿产地数据库,全国地质工业行业矿产地数据库,中国铬镍(铜)钴铂(族)矿产地数据库(在建)。
(5)全国钻孔地质数据库(试建库)
(6)全国地球物理、地球化学、遥感数据库
全国 1∶500 万航磁数据库,全国 1∶100 万航次数据库,全国区域重力数据库,全国电勘查数据库,地质调查地球物理测井数据库系统(试建库),全国区域地球化学数据库,全国资源卫星遥感影像数据库,全国 1∶25 万标准图幅卫星影像数据库,全国物性数据库(试建库)。
(7)海洋地质数据库
我国 1∶100 万海洋地质数据库、我国海洋地球物理数据集。
(8)地质资料数据库
全国地质资料馆馆藏资料目录数据库,图文地质资料数据库,地质调查成果资料目录检索数据库,地学图书期刊类文献标题和摘要的网络数据库,地质调查与科技信息数据库。
(9)工作部署与综合成果数据库
地质调查专题图数据库(全国及大区各专业不同比例尺地质调查工作部署与工作程度数据),全国地质工作程度数据库,地学数据库元数据库。
10 余个国家级已建数据库通过运行维护管理,初步依照国家相关法规开展了社会化服务利用。数据发布方式分为在线和离线两种。中国地质调查局网站以中英文两种语言发布了元数据。据 2003 年 6 月至2005 年 6 月间不完全统计,地调局提供各类数据总量接近 100GB[7]。
222 网络在线信息获取服务
(1)中国地质图书馆网站(>
(2)全国地质资料馆网站(>
(3)中国地质调查信息网站(>
(4)国土资源科学数据共享网站(>
223 信息加工分析服务
中国地质调查信息网络提供了以下应用软件共享服务:①水质评价服务,面向不同类型的用户,提供水质评价的信息服务和软件共享服务;②地下水水位预测,利用动态观测数据,预测指定区域未来水位的变化情况;③网络环境下成矿信息提取与综合:使用证据权方法完成网络矿产综合评价过程;④常规计算方法的固体矿产资源评价方法软件共享服务。
224 专业软件提供服务
中国地质调查局组织研发的数字地质调查系统,是贯穿整个地质矿产资源调查完整全过程的软件,涵盖地质调查、固体矿产勘查、矿体模拟、品位估计、资源储量估算、矿山开采系统优化等内容,实现了地质填图、固体矿产勘查的全数字化过程。该软件系统由四大子系统构成:数字地质填图系统、探矿工程数据编录系统、数字地质调查信息综合平台、资源储量估算与矿体三维建模信息系统。
3 存在的不足
我国地质信息服务总体来说,虽然有了一定数量的数据资源,但是比较分散,没有形成完整的服务体系;有关服务的政策和机制不健全,尤其是缺乏公开服务的管理办法,责权利不统一。
31 集群化程度低
目前,我国地质信息产品不少,国家投资也比较大,但是一个数据库一个服务系统,没有完整的产品目录,多重注册情况严重,不能满足用户的一站式需求。
32 网络在线数据量少
目前,我国地质资料数字化比例较低。截至 2011 年底,全国各省(区、市)累计完成成果地质资料数字化总量 239 万种,数字化比例约 59%,其中全国地质资料馆累计完成近 6 万种地质资料数字化,数字化率 48%[4]。此为成果地质资料数字化情况。原始地质资料的数字化还未全面启动。信息资源的拥有量和能够提供在线服务的信息量也极不匹配,截至2010年,全国地质资料馆累计提供网络浏览资料14274种,当年馆藏总量为 11 万种[8],提供在线服务的比例为 13%。
因此,造成网络在线数据量少的原因主要有三:一是地质信息的数据积累不足;二是地质资料的保密是一个瓶颈,需积极推进地质图地理要素非涉密化处理;三是政策机制不健全,公益性不够。
33 地质资料获取费用高
虽然我国的定价原则已经确定,但到现在也没有确定的公开的地质信息与信息服务详细的分类价格,这造成很多数据的服务受到限制,并且各地的收费不一致,有的收费偏高。
4 展望
地质信息服务应当在数据一体化管理和共享平台下,按照统一标准和存储规范,形成逻辑上统一、物理上分布的国家地质数据集群系统。集群系统应当在实现一站式服务的前提下包含以下主要功能:
(1)完整的地质信息资源目录。
建立全国范围内完整的地质资源检索目录,一方面包含地质资料和图书文献,另一方面包含各级馆藏机构和地勘科研单位长期以来积累的地质信息资源。在发达国家,USGS、GSC、BGS、GA 等都提供了完整的各类地学信息的目录查询检索系统,帮助用户快速便捷地检索到所需信息和数据。
(2)丰富的网络在线资源。
在发达国家,由于在线资源极为丰富,其地质信息网站的访问也十分活跃。以美国 USGS 为例,2005 年平均每月成功的服务请求达 2400 万次,经网上传输的数据量达 180 多 G。5 年间访问 USGS 网站的次数约 76260 万次,是在大约相同的时间内访问全国地质资料馆 CGS 网站次数的 600 倍[3]。在对地质资料信息网络获取率调查中,加拿大用户可以通过网络获取 29%的数据,美国可以获取 27%,澳大利亚可以获取 85%[5]。
我国地质资料解密工作研究,已部署在“十二五”地质资料信息服务集群化产业化综合研究中,为今后地质资料的在线服务提供了基础。
(3)强大的信息加工、处理和分析能力。
中国地质调查信息网络在这方面作出了示范。应用网格技术编制软件对地质信息进行加工处理,将在某些方面大大提高工作效率。网络技术最直观的优点之一便是超强的计算能力,它能够把一个集群的计算机连成一个局域型网络,形成一台超级计算机,大大提高计算效率。原先在单一 PC 上运行需要花费几个月时间完成的计算,在网格中运行一两天就能够完成。
(4)应用软件服务。
提供各种高性能的专业工具软件服务。
(5)敏感信息的实时发布。
天气预报、台风、地震波观测数据的实时发布,以及通过专用系统发布地震、海啸、火山喷发、台风龙卷风等自然灾害预警信息。
(6)提供科学咨询、决策分析、科普宣传与教育培训等服务。
5 结语
2009 年,中国地调局开展了地质资料信息集群化产业化研究,包括“地质资料信息集群化产业化理论”“地质资料信息服务集群体系建设”“地质资料信息共享与服务平台建设”等 13 个专题的研究工作。国土资源部确定在上海、山东、湖南、湖北、安徽和青海 6 省市进行试点工作[9]。在这些工作部署中,我们看到了我国地质信息服务的光辉前景。
参 考 文 献
[1] 国土资源部 国土资源部推进地质资料信息服务集群化产业化 [EB] >
[2] 姜作勤 地质工作信息化的若干问题 [J] 地质通报,2004,23(9/10):839 ~ 845
[3] 尚武等 中国地质信息服务体系的现状、差距及对策 [J] 中国地质,2007 Vol34,No4:730 ~ 735
[4] 国土资源部 2012 年 05 月 14 日通知公告:2011 年度全国地质资料管理与服务情况
[5] 姚华军等 推进地质资料信息服务集群化和产业化的研究 [J] 中国国土资源经济,2009/09:4 ~ 7
[6] 姜作勤,马智民,杨东来等 地质信息服务体系框架研究 [J] 中国地质,2007,34(1):173 ~ 178
[7] 中国地质调查局年鉴 2003,2004
[8] 国土资源部 2011 年 4 月 14 日通知公告:2010 年度全国地质资料管理与服务情况
[9] 国土资源部通报第 14 期 2009 年度全国地质资料管理情况
马飞飞1 李莉2 郭慧锦1
(1中国地质调查局发展研究中心;2中国地质调查局武汉地质调查中心)
摘要 中国地质调查局自1999年以来,在数字区域地质调查基本理论与技术方面,开展了系统全面的研究,由2004年数字填图系统RGMap 20升级到2010年的数字地质调查系统DGSS(2010)。自开展此项技术工作,获得了大量的数字地质调查资料,但数字地质调查资料的汇交仍没有标准规范,影响了数字地质调查资料的汇交和验收工作。本文提出了数字地质调查数据库资料的汇交技术要求,包括数字地质调查数据库资料汇交内容、格式要求、文件的编制、组织形式、质量要求及数据检查等几个方面的内容。本汇交技术要求的研究和探索为地质资料汇交人和地质资料管理机构接收、检查地质调查资料提供了依据。
关键词 数字地质调查 数据库资料 汇交技术要求
1 研究现状
中国地质调查局自1999年以来,在数字区域地质调查基本理论与技术方面,开展了系统全面的研究,并于2001年和2002年,相继开展了1:5万和1:25万数字试点填图。至2003年,研制开发的数字填图系统(RGMap),它使野外数据采集的空间定位及数据采集方法发生了根本性变化,填补了我国地学信息野外现场数字采集技术的空白。传统的纸质笔记簿和手图,被具有GPS定位与导航显示、漫游的数字化地理底图、具图形编辑功能和电子笔记簿功能的野外数据采集系统所取代。这种全新的野外数据采集系统具有可视化野外定位、标绘各种地质体和地质界线、地质现象描述、产状记录、采样、素描、照片、野外实测剖面数据等多源空间数据的获取、存储与管理的功能,并采用了结构化数据库与非结构化地质观察现象文本数据库相结合的特点,辅以PRB 字典库,为地质学家野外调查提供了多方位技术支撑。通过4幅1:5万和10幅1:25万数字试点填图试点应用,使数字填图系统已臻于完善,为中国地质调查局全面推广数字填图方法奠定了良好的基础。2004年,数字填图工作在全国正式全面展开,从此,我国在全球真正率先实现了区域地质调查中的计算机技术应用全程化[1~5]。
2004年,数字填图系统由数字RGMap-RGMapGIS-MEMap-MEMapGIS-MEExplo五大子系统构成。RGMap为数字填图野外数据采集子系统、RGMapGIS为数字填图室内综合整理与数据处理子系统、MEMap为矿产资源调查评价探矿工程数据采集子系统、MEMapGIS为矿产资源调查评价矿区数据、控矿工程数据的数据综合、处理、制图子系统、MEExplo为矿产资源调查评价、资源量估算与矿体三维可视化子系统。
2010年,将数字填图野外数据采集系统、数字剖面系统、固体矿产野外数据采集系统、矿产资源调查数据处理与综合分析子系统、资源储量估算系统和矿体三维显示系统等6大系统集成为一体化的数字地质调查系统软件DGSS(2010)。该软件系统由4大子系统构成:①数字地质填图系统,RGMAP(Regional Geological Mapping System);②探矿工程数据编录系统,PEData(Prospecting Engineering Data Documentation System);③数字地质调查信息综合平台,DGSInfo(Digital Geological Survey Information System);④资源储量估算与矿体三维建模信息系统,REInfo(Reserve Estimate &3D Modeling Information System)。
数字地质调查项目数据库资料汇交到目前仍没有标准规范而不能为广大地质工作者和国民经济提供更好的服务,很多数字地质调查项目已经完成工作,但是地质资料却不能及时汇交并提供利用,汇交人不清楚数字地质调查数据库资料应汇交哪些内容,数据应如何组织,接收人不知道如何接收、检查数字地质调查数据库资料,数字地质调查技术方法目前主要运用于1:5万、1:25万区域地质调查和1:5万矿产远景调查项目,因此笔者重点就区域地质调查和矿产远景调查数字地质调查数据库资料的汇交进行了研究和探索,现从数字地质调查数据库资料汇交内容、组织形式、质量要求、数据的验收等几个方面进行了论述。
2 汇交内容
21 区域地质调查形成的数字地质调查数据库资料的汇交内容
汇交内容包括:背景图层库、图幅PRB库、野外手图库、采集日备份、样品数据库、实际材料图库、编稿原图库、空间数据库、综合成果、遥感、勘探工程库、基本信息、数字剖面等。
22 矿产远景调查形成的数字地质调查数据库资料的汇交内容
汇交内容主要包括:背景图层库、图幅PRB库、野外手图库、采集日备份、样品数据库、实际材料图库、编稿原图库、空间数据库、地球化学库、地球物理库、基本信息库、勘探工程库、遥感、综合成果、大比例尺综合图和数字剖面、元数据和各类建库文档等。
3 格式要求
数字地质调查数据库文件的格式要求严格按照数字地质调查系统自动生成的电子文件格式汇交,电子文件的命名、属性结构不得更改;各类成果库的整理应符合相关的数据库建库标准(如地质图空间数据库标准、战略性矿产远景调查数据库建库(数据字典)标准)等。
软件类电子文件的格式原则上不作限制,主要提供项目开展中所使用的软件或根据开发时所用的工具软件而提交相应格式的电子文件。
数据库文件的汇交,应包括数字地质调查项目实施过程中形成的全部数据库文件、元数据文件和数据库所涉及的字典库与系统库,以使数据库能够正常打开,汇交的数据库只能使用数字地质调查系统自带的系统库(SLIB)文件;确保数据库中各个图层齐全,属性完整,参数正确;删除数据库中的冗余文件及文件夹。汇交数据库的同时需汇交与数据库相关的建库工作报告、数据库验收意见、数据库验收报告等文字材料。
以数据为主的数据库(如关系型数据库、属性数据库)应汇交包括所有数据在内的表文件以及与之相关的索引文件、备注文件、容器文件等。
以图形为主的数据库应汇交所有的图形文件、图层文件、外挂库和浏览数据库所必需的系统库、字库、属性库、外部链接文件等相关文件以及与数据库关系密切的其他文件和文件夹。
以光栅图像为主的数据库应汇交所有图像文件及与之相关的其他文件和文件夹。
软件汇交,应包括最终形成的软件系统的安装程序、源代码以及软件使用说明等相关文件和技术文档,如有测试数据也应一并汇交。
非独立使用的软件应提供相应的支持软件或控件,无法提供时应在电子文件登记表的“电子文档说明”中说明获取的方式和途径及其版本、生产商等相关信息。
4 文件的编制
数据库和软件类电子文件汇交时,数据库类文件应保持数字地质调查系统自身文件的组织方式、目录结构和属性结构。数据库类文件编制时按照数字地质调查系统自动生成的文件夹形式进行存放;地质图空间数据库按照《DD2006-06 数字地质图空间数据库标准》进行编制,装饰图层分层进行整饰,整饰图层的命名采用被整饰图层名前面加“a”表示,如 a_GeoPolygonwl,a_GeoPolygonw,地理图层的命名和属性采用国家地理信息中心提供的地理底图的命名和属性进行编制;其他库文件按照战略性矿产远景调查数据库建库(数据字典)标准进行建库; 元数据按照《DD2006-05地质信息元数据标准》,采用元数据采集器进行编制。
“安装程序”、“源代码”、“技术文档”、“测试数据”等类别分类建立文件夹存放相应的电子文件。
数据库或软件类所用到各种工具软件的系统库、字库等相关文件要以独立文件夹的形式与其他与之相关的电子文件存放在一起。如果是整个系统共用一套文件,则可将它们存放在上一级文件夹中,并在电子文件登记表的“电子文档说明”中给予说明。
5 组织形式
每一份数字地质调查资料电子文档以一个独立的子目录(一级子目录)置于根目录下,子目录名即为该份资料的电子文档号,该份电子文档所有的电子文件均置于此子目录下。在一级子目录下建立两个名为“源电子文件”和“存档电子文件”的二级子目录,分别用于存放该份电子文档的源电子文件和存档电子文件。在“源电子文件”子目录下建立一个名为“数据库和软件”的三级子目录,将数字地质调查技术形成的所有数据库资料按照其系统形成的原有的目录结构分类存放到该子目录中。
6 质量要求
数字地质调查数据库资料内容齐全,包括技术文档、原始资料数据库、综合成果数据库、元数据、建库工作报告和质量控制文档等内容。数字地质调查数据库资料需经过专家验收,提供正式的验收记录表、验收意见和验收报告等。各类库文件应按相关规范完成数据库的建库工作任务(重点是空间数据库、地球化学库、地球物理库、样品数据库、综合成果库的建库)。数据库结构和数据表关联关系正确,该数据库文件可由数字地质调查系统运行。数据种类应与报告一致。数据必须分图幅组织。所有的数据库文件必须有正确的投影参数。
7 数据检查
71 齐全性检查
对照任务书、成果报告、成果报告评审意见及数据库文件的验收报告或验收意见书检查数字地质调查数据库文件数据是否汇交齐全,检查内容参照数字地质调查数据库资料汇交内容。
72 完整性检查
对照数字地质调查数据库资料汇交内容与数据库资料电子文档的组织形式检查数据的完整性。重点检查文件、图层、数据表、空间实体的完整性,数据量缺失和数据项缺失,注记的完整性和相关技术文档的完整性等。
73 正确性检查
①按照数字地质调查数据库资料电子文档的组织形式检查数据库文件组织形式的正确性。②对照成果图检查空间数据库文件是否为最终的成果数据,首先检查图元个数的一致性,图元是否有多余或遗漏;其次检查图元数据相对位置的正确性,确保空间数据库文件是最终的成果数据。③数据文件及文件夹命名的正确性:文件存放位置的正确性及数据属性中上下标、大小写等书写格式的正确性。④系统库文件正确性的检查。⑤数据参数的正确性检查。⑥整饰文件的正确性。重点检查整饰图层文件的命名、内容等是否符合相关标准与技术要求。⑦空间数据库的正确性。按照地质图空间数据库文件存储组织结构表进行空间数据库的检查。⑧地理数据的正确性。重点检查地理数据的命名和属性的正确性;地理图层的命名和属性需按照国家地理信息中心提供的地理底图进行命名和属性结构的设置。
8 意义
数字地质调查数据库资料汇交技术要求适用于区域地质调查、区域矿产调查、地质勘探等地质工作采用数字地质调查系统形成的资料的制作、接收、验收和汇交。区域地球化学调查、区域地球物理调查、矿产评价等采用数字地质调查技术形成的资料可参照本汇交技术要求。
本技术要求中的数字地质调查数据库资料的汇交内容、格式要求、文件的编制、质量要求、数据检查及组织形式示例对地质资料汇交人如何汇交数字地质调查资料,资料管理机构的资料管理人员接收、验收此类地质资料起到一定的指导作用,为今后地质资料的社会化服务打下了坚实的基础,使得地质资料的社会化服务水平更上一个台阶。
参考文献
[1]李超岭,于庆文,杨东来,等PRB数字地质填图技术研究[J]地球科学—中国地质大学学报,2003,28(4):377~383
[2]李超岭,张克信,墙芳躅,等数字区域地质调查系统技术研究[J]地球科学进展,2002,17(5):763~768
[3]李超岭,杨东来,于庆文,等数字地质调查与填图技术方法研究[J]中国地质,2002,29(2):213~217
[4]李超岭,于庆文,张克信,等数字区域地质调查基本理论与技术方法[M]北京:地质出版社,2003
[5]李超岭,张克信,于庆文,等数字填图中不同阶段数据模型的继承技术[J]地球科学,2004,29(6):745~752
这一点是不可能做到的,不要说完整的卫星影像数据,谷歌地球仅仅局部更新的数据量就可达数十TB,而且更新后的旧影像依然保存,你可以在“历史图像”中查看它们,因而谷歌地球数据库是在不断膨胀,没有任何一台个人电脑能装得下。
图7-1 IDS/Se的知识树结构,每一结点是一个知识对象类
本系统中的信息资源分为空间数据和非空间属性数据两大类。其中的属性数据又按专业分为环境地球化学数据和地方病数据。属性数据的管理,是GIS基本的数据结构之一,这些数据库之间以键值作为连接标识。GIS信息及非空间属性数据的显示、查询、统计等 *** 作都是建立在这些基本数据的基础之上的。属性数据的管理是用FoxPro数据库管理系统作为平台开发的。为了对环境调查中的各种信息提供更好的管理,应用FoxPro设计了对基本的空间数据、环境地球化学信息、微量元素信息、各种地方病的调查数据进行有效管理的子系统。这一部分既可以单独运行也可作为IDS/Se的一个模块。这一子系统已经采集加工了本课题的野外调查和样品测试数据。
(一)空间数据
空间数据即基本的地理信息,其中包括行政区域的类型、边界坐标链、标识点坐标、经纬度、名称、人口以及各种行政实体之间的拓扑关系。在对地图进行数字化时,为了保证数据的精度,必须用大比例尺的地图作为底图,将其分为多个图幅分别对所需要的地理层的要素进行采样。完成了各图幅的数字化后再将其拼接得到完整的地图。本书设计实现了对空间数据进行处理的各个步骤的处理程序,包括从数字化采样、数据编码、数据修正、图幅间的拼接等一系列处理过程的工具,并实现了对中国政区图、河北省张家口地区政区图及采样点位图、湖北省恩施苗族土家族自治州政区图及采样点位图的数字化工作。数字化得到的地图数据和空间实体之间的拓扑关系保存在数据库文件中。
(二)环境地球化学数据
环境地球化学数据库用于管理GIS中的非空间属性数据。与人类健康密切相关的属性数据包括气候类型、年平均降雨量、海拔高度、基岩类型、土壤酸碱度、土壤氧化还原电位、人体必需的微量元素的含量、人体对微量元素的正常需要量、人体实际日均摄入量、人体中微量元素的正常含量水平等。这些信息都存储在相应的数据库中,实现了对非空间属性数据的管理、查询、统计、分析,以及这些非空间属性数据与相应的空间数据的联结。环境地球化学数据的数据量很大,涉及的面也很广,如何有效地对这些数据进行管理直接影响到整个系统运行的效率。在这里我们主要存储与硒环境关系密切的一些属性数据,它又分为环境土壤样品、环境水样品、环境粮食和头发样品等的采样点信息以及这些样品中30多种微量元素的分析结果数据。
(三)地方病发病信息
管理与硒含量有关的地方病发病信息,将以村为单位的年度地方病统计资料存储在相应的数据库中,可以根据行政单位、疾病种类、年代、不同人群等条件对相应的发病情况进行查询。还可以根据上述条件进行简单的统计,计算各自在总体中所占的百分比,并在相应的地图中显示其地理分布情况。地方性疾病的发生是特定地理环境对人体健康产生影响的综合表现,除了人们已经认识到的控制因素以外,可能还有一些因素未被人们所认识,通过分析对比揭示这些影响因素之间的内在联系正是我们工作的目标之一。
以上就是关于我国地质信息服务现状分析及展望全部的内容,包括:我国地质信息服务现状分析及展望、数字地质调查数据库资料汇交技术要求的研究与意义、如何把谷歌地球的数据全部下载下来啊等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)