数据库原理与应用

数据库原理与应用,第1张

数据库原理是按照数据结构来组织、存储和管理数据的仓库,二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。应用在管理信息系统、办公自动化系统、决策支持系统等各类信息系统。

数据库系统(database systems),是由数据库及其管理软件组成的系统。它是为适应数据处理的需要而发展起来的一种较为理想的数据处理的核心机构。它是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。

数据库特点

数据的结构化,数据的共享性好,数据的独立性好,数据存储粒度小,数据管理系统,为用户提供了友好的接口。数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。数据库系统的核心是数据库管理系统。

数据库系统一般由数据库、数据库管理系统(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。

创建一个以JDBC连接数据库的程序,包含7个步骤:

1、加载JDBC驱动程序:

在连接数据库之前,首先要加载想要连接的数据库的驱动到JVM(Java虚拟机),

这通过javalangClass类的静态方法forName(String className)实现。

例如:

try{

//加载MySql的驱动类

ClassforName("commysqljdbcDriver") ;

}catch(ClassNotFoundException e){

Systemoutprintln("找不到驱动程序类 ,加载驱动失败!");

eprintStackTrace() ;

}

成功加载后,会将Driver类的实例注册到DriverManager类中。

2、提供JDBC连接的URL

•连接URL定义了连接数据库时的协议、子协议、数据源标识。

•书写形式:协议:子协议:数据源标识

协议:在JDBC中总是以jdbc开始

子协议:是桥连接的驱动程序或是数据库管理系统名称。

数据源标识:标记找到数据库来源的地址与连接端口。

例如:(MySql的连接URL)

jdbc:mysql:

//localhost:3306/testuseUnicode=true&characterEncoding=gbk ;

useUnicode=true:表示使用Unicode字符集。如果characterEncoding设置为

gb2312或GBK,本参数必须设置为true 。characterEncoding=gbk:字符编码方式。

3、创建数据库的连接

•要连接数据库,需要向javasqlDriverManager请求并获得Connection对象,

该对象就代表一个数据库的连接。

•使用DriverManager的getConnectin(String url , String username ,

String password )方法传入指定的欲连接的数据库的路径、数据库的用户名和

密码来获得。

例如:

//连接MySql数据库,用户名和密码都是root

String url = "jdbc:mysql://localhost:3306/test" ;

String username = "root" ;

String password = "root" ;

try{

Connection con =

DriverManagergetConnection(url , username , password ) ;

}catch(SQLException se){

Systemoutprintln("数据库连接失败!");

seprintStackTrace() ;

}

4、创建一个Statement

•要执行SQL语句,必须获得javasqlStatement实例,Statement实例分为以下3

种类型:

1、执行静态SQL语句。通常通过Statement实例实现。

2、执行动态SQL语句。通常通过PreparedStatement实例实现。

3、执行数据库存储过程。通常通过CallableStatement实例实现。

具体的实现方式:

Statement stmt = concreateStatement() ;

PreparedStatement pstmt = conprepareStatement(sql) ;

CallableStatement cstmt =

conprepareCall("{CALL demoSp( , )}") ;

5、执行SQL语句

Statement接口提供了三种执行SQL语句的方法:executeQuery 、executeUpdate

和execute

1、ResultSet executeQuery(String sqlString):执行查询数据库的SQL语句

,返回一个结果集(ResultSet)对象。

2、int executeUpdate(String sqlString):用于执行INSERT、UPDATE或

DELETE语句以及SQL DDL语句,如:CREATE TABLE和DROP TABLE等

3、execute(sqlString):用于执行返回多个结果集、多个更新计数或二者组合的

语句。

具体实现的代码:

ResultSet rs = stmtexecuteQuery("SELECT FROM ") ;

int rows = stmtexecuteUpdate("INSERT INTO ") ;

boolean flag = stmtexecute(String sql) ;

6、处理结果

两种情况:

1、执行更新返回的是本次 *** 作影响到的记录数。

2、执行查询返回的结果是一个ResultSet对象。

• ResultSet包含符合SQL语句中条件的所有行,并且它通过一套get方法提供了对这些

行中数据的访问。

• 使用结果集(ResultSet)对象的访问方法获取数据:

while(rsnext()){

String name = rsgetString("name") ;

String pass = rsgetString(1) ; // 此方法比较高效

}

(列是从左到右编号的,并且从列1开始)

7、关闭JDBC对象

*** 作完成以后要把所有使用的JDBC对象全都关闭,以释放JDBC资源,关闭顺序和声

明顺序相反:

1、关闭记录集

2、关闭声明

3、关闭连接对象

if(rs != null){ // 关闭记录集

try{

rsclose() ;

}catch(SQLException e){

eprintStackTrace() ;

}

}

if(stmt != null){ // 关闭声明

try{

stmtclose() ;

}catch(SQLException e){

eprintStackTrace() ;

}

}

if(conn != null){ // 关闭连接对象

try{

connclose() ;

}catch(SQLException e){

eprintStackTrace() ;

}

}

数据库索引的实现原理

一、概述数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。其实说穿了,索引问题就是一个查找问题。二、索引的原理当我们的业务产生了大量的数据时,查找数据的效率问题也就随之而来,所以我们可以通过为表设置索引,而为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。

上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。创建索引可以大大提高系统的性能第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显着减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢因为,增加索引也有许多不利的方面。创建索引的弊端第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。三、索引的类型根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引。唯一索引唯一索引是不允许其中任何两行具有相同索引值的索引。当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。主键索引数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。聚集索引在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。四、局部性原理与磁盘预读由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中着名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及 *** 作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多 *** 作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。五、B树和B+树数据结构1、B树B树中每个节点包含了键值和键值对于的数据对象存放地址指针,所以成功搜索一个对象可以不用到达树的叶节点。成功搜索包括节点内搜索和沿某一路径的搜索,成功搜索时间取决于关键码所在的层次以及节点内关键码的数量。在B树中查找给定关键字的方法是:首先把根结点取来,在根结点所包含的关键字K1,…,kj查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查的关键字在某个Ki或Ki+1之间,于是取Pi所指的下一层索引节点块继续查找,直到找到,或指针Pi为空时查找失败。2、B+树B+树非叶节点中存放的关键码并不指示数据对象的地址指针,非也节点只是索引部分。所有的叶节点在同一层上,包含了全部关键码和相应数据对象的存放地址指针,且叶节点按关键码从小到大顺序链接。如果实际数据对象按加入的顺序存储而不是按关键码次数存储的话,叶节点的索引必须是稠密索引,若实际数据存储按关键码次序存放的话,叶节点索引时稀疏索引。B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。所以 B+树有两种搜索方法:一种是按叶节点自己拉起的链表顺序搜索。一种是从根节点开始搜索,和B树类似,不过如果非叶节点的关键码等于给定值,搜索并不停止,而是继续沿右指针,一直查到叶节点上的关键码。所以无论搜索是否成功,都将走完树的所有层。B+ 树中,数据对象的插入和删除仅在叶节点上进行。这两种处理索引的数据结构的不同之处:1、B树中同一键值不会出现多次,并且它有可能出现在叶结点,也有可能出现在非叶结点中。而B+树的键一定会出现在叶结点中,并且有可能在非叶结点中也有可能重复出现,以维持B+树的平衡。2、因为B树键位置不定,且在整个树结构中只出现一次,虽然可以节省存储空间,但使得在插入、删除 *** 作复杂度明显增加。B+树相比来说是一种较好的折中。3、B树的查询效率与键在树中的位置有关,最大时间复杂度与B+树相同(在叶结点的时候),最小时间复杂度为1(在根结点的时候)。而B+树的时候复杂度对某建成的树是固定的。六、B/+Tree索引的性能分析到这里终于可以分析B-/+Tree索引的性能了。上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。综上所述,用B-Tree作为索引结构效率是非常高的。

数据库系统的基本概念

数据:实际上就是描述事物的符号记录。

数据的特点:有一定的结构,有型与值之分,如整型、实型、字符型等。而数据的值给出了符合定型的值,如整型值15。

数据库:是数据的集合,具有统一的结构形式并存放于统一的存储介质内,是多种应用数据的集成,并可被各个应用程序共享。

数据库存放数据是按数据所提供的数据模式存放的,具有集成与共享的特点。

数据库管理系统:一种系统软件,负责数据库中的数据组织、数据 *** 纵、数据维护、控制及保护和数据服务等,是数据库的核心。

以上就是关于数据库原理与应用全部的内容,包括:数据库原理与应用、java中,用DAO查询一个数据库步骤,分哪几个步骤,原理解析、数据库索引的实现原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9309236.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存