如果两个程序都向表中写数据显然会造成很大的麻烦,甚至会有意外情况发生。如果表正由一个程序写入,同时进行读取的另一个程序也会产生混乱的结果。锁定表的方法防止客户机的请求互相干扰或者服务器与维护程序相互干扰的方法主要有多种。如果你关闭数据库,就可以保证服务器和myisamchk和isamchk之间没有交互作用。但是停止服务器的运行并不是一个好注意,因为这样做会使得没有故障的数据库和表也不可用。本节主要讨论的过程,是避免服务器和myisamchk或isamchk之间的交互作用。实现这种功能的方法是对表进行锁定。服务器由两种表的锁定方法:1内部锁定内部锁定可以避免客户机的请求相互干扰——例如,避免客户机的SELECT查询被另一个客户机的UPDATE查询所干扰。也可以利用内部锁定机制防止服务器在利用myisamchk或isamchk检查或修复表时对表的访问。语法:锁定表:LOCK TABLEStbl_name {READ | WRITE},[ tbl_name {READ | WRITE},…]解锁表:UNLOCKTABLESLOCKTABLES为当前线程锁定表。UNLOCK TABLES释放被当前线程持有的任何锁。当线程发出另外一个LOCKTABLES时,或当服务器的连接被关闭时,当前线程锁定的所有表自动被解锁。如果一个线程获得在一个表上的一个READ锁,该线程(和所有其他线程)只能从表中读。如果一个线程获得一个表上的一个WRITE锁,那么只有持锁的线程READ或WRITE表,其他线程被阻止。每个线程等待(没有超时)直到它获得它请求的所有锁。WRITE锁通常比READ锁有更高的优先级,以确保更改尽快被处理。这意味着,如果一个线程获得READ锁,并且然后另外一个线程请求一个WRITE锁,随后的READ锁请求将等待直到WRITE线程得到了锁并且释放了它。显然对于检查,你只需要获得读锁。再者钟情跨下,只能读取表,但不能修改它,因此他也允许其它客户机读取表。对于修复,你必须获得些所以防止任何客户机在你对表进行 *** 作时修改它。2外部锁定服务器还可以使用外部锁定(文件级锁)来防止其它程序在服务器使用表时修改文件。通常,在表的检查 *** 作中服务器将外部锁定与myisamchk或isamchk作合使用。但是,外部锁定在某些系统中是禁用的,因为他不能可靠的进行工作。对运行myisamchk或isamchk所选择的过程取决于服务器是否能使用外部锁定。如果不使用,则必修使用内部锁定协议。如果服务器用--skip-locking选项运行,则外部锁定禁用。该选项在某些系统中是缺省的,如Linux。可以通过运行mysqladminvariables命令确定服务器是否能够使用外部锁定。检查skip_locking变量的值并按以下方法进行:◆如果skip_locking为off,则外部锁定有效您可以继续并运行人和一个实用程序来检查表。服务器和实用程序将合作对表进行访问。但是,运行任何一个实用程序之前,应该使用mysqladmin flush-tables。为了修复表,应该使用表的修复锁定协议。◆如果skip_locaking为on,则禁用外部锁定,所以在myisamchk或isamchk检查修复表示服务器并不知道,最好关闭服务器。如果坚持是服务器保持开启状态,月确保在您使用此表示没有客户机来访问它。
当多个用户访问同一份数据时,一个用户在更改数据的过程中,可能有其他用户同时发起更改请求,为保证数据库记录的更新从一个一致性状态变为另外一个一致性状态,使用事务处理是非常必要的,事务具有以下四个特性:
MySQL 提供了多种事务型存储引擎,如 InnoDB 和 BDB 等,而 MyISAM 不支持事务。为了支持事务,InnoDB 存储引擎引入了与事务处理相关的 REDO 日志和 UNDO 日志,同时事务依赖于 MySQL 提供的锁机制
事务执行时需要将执行的事务日志写入日志文件,对应的文件为 REDO 日志。当每条 SQL 进行数据更新 *** 作时,首先将 REDO 日志写进日志缓冲区。当客户端执行 COMMIT 命令提交时,日志缓冲区的内容将被刷新到磁盘,日志缓冲区的刷新方式或者时间间隔可以通过参数 innodb_flush_log_at_trx_commit 控制
REDO 日志对应磁盘上的 ib_logifleN 文件,该文件默认为 5MB,建议设置为 512MB,以便容纳较大的事务。MySQL 崩溃恢复时会重新执行 REDO 日志的记录,恢复最新数据,保证已提交事务的持久性
与 REDO 日志相反,UNDO 日志主要用于事务异常时的数据回滚,具体内容就是记录数据被修改前的信息到 UNDO 缓冲区,然后在合适的时间将内容刷新到磁盘
假如由于系统错误或者 rollback *** 作而导致事务回滚,可以根据 undo 日志回滚到没修改前的状态,保证未提交事务的原子性
与 REDO 日志不同的是,磁盘上不存在单独的 UNDO 日志文件,所有的 UNDO 日志均存在表空间对应的 ibd 数据文件中,即使 MySQL 服务启动了独立表空间
在 MySQL 中,可以使用 BEGIN 开始事务,使用 COMMIT 结束事务,中间可以使用 ROLLBACK 回滚事务。MySQL 通过 SET AUTOCOMMIT、START TRANSACTION、COMMIT 和 ROLLBACK 等语句支持本地事务
MySQL 定义了四种隔离级别,指定事务中哪些数据改变其他事务可见、哪些数据该表其他事务不可见。低级别的隔离级别可以支持更高的并发处理,同时占用的系统资源更少
InnoDB 系统级事务隔离级别可以使用以下语句设置:
查看系统级事务隔离级别:
InnoDB 会话级事务隔离级别可以使用以下语句设置:
查看会话级事务隔离级别:
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。读取未提交的数据称为脏读(Dirty Read),即是:首先开启 A 和 B 两个事务,在 B 事务更新但未提交之前,A 事务读取到了更新后的数据,但由于 B 事务回滚,导致 A 事务出现了脏读现象
所有事务只能看见已经提交事务所做的改变,此级别可以解决脏读,但也会导致不可重复读(Nonrepeatable Read):首先开启 A 和 B 两个事务,A事务读取了 B 事务的数据,在 B 事务更新并提交后,A 事务又读取到了更新后的数据,此时就出现了同一 A 事务中的查询出现了不同的查询结果
MySQL 默认的事务隔离级别,能确保同一事务的多个实例在并发读取数据时看到同样的数据行,理论上会导致一个问题,幻读(Phontom Read)。例如,第一个事务对一个表中的数据做了修改,这种修改会涉及表中的全部数据行,同时第二个事务也修改这个表中的数据,这次的修改是向表中插入一行新数据,此时就会发生 *** 作第一个事务的用户发现表中还有没有修改的数据行
InnoDB 通过多版本并发控制机制(MVCC)解决了该问题:InnoDB 通过为每个数据行增加两个隐含值的方式来实现,这两个隐含值记录了行的创建时间、过期时间以及每一行存储时间发生时的系统版本号,每个查询根据事务的版本号来查询结果
通过强制事务排序,使其不可能相互冲突,从而解决幻读问题。简而言之,就是在每个读的数据行上加上共享锁实现,这个级别会导致大量的超时现象和锁竞争,一般不推荐使用
为了解决数据库并发控制问题,如走到同一时刻客户端对同一张表做更新或者查询 *** 作,需要对并发 *** 作进行控制,因此产生了锁
共享锁的粒度是行或者元组(多个行),一个事务获取了共享锁以后,可以对锁定范围内的数据执行读 *** 作
排他锁的粒度与共享锁相同,一个事务获取排他锁以后,可以对锁定范围内的数据执行写 *** 作
有两个事务 A 和 B,如果事务 A 获取了一个元组的共享锁,事务 B 还可以立即获取这个元组的共享锁,但不能获取这个元组的排他锁,必须等到事务 A 释放共享锁之后。如果事务 A 获取了一个元组的排他锁,事务 B 不能立即获取这个元组的共享锁,也不能立即获取这个元组的排他锁,必须等到 A 释放排他锁之后
意向锁是一种表锁,锁定的粒度是整张表,分为意向共享锁和意向排他锁。意向共享锁表示一个事务有意对数据上共享锁或者排他锁。有意表示事务想执行 *** 作但还没真正执行
锁的粒度主要分为表锁和行锁
表锁的开销最小,同时允许的并发量也是最小。MyISAM 存储引擎使用该锁机制。当要写入数据时,整个表记录被锁,此时其他读/写动作一律等待。一些特定的动作,如 ALTER TABLE 执行时使用的也是表锁
行锁可以支持最大的并发,InnoDB 存储引擎使用该锁机制。如果要支持并发读/写,建议采用 InnoDB 存储引擎
recordset的open语句后边的参数就可以控制
RSOPEN SQL,CONN,A,B
A:
ADOPENFORWARDONLY(=0)
只读,且当前数据记录只能向下移动
ADOPENKEYSET(=1)
只读,当前数据记录可自由移动
ADOPENDYNAMIC(=2)
可读写,当前数据记录可自由移动
ADOPENSTATIC(=3)
可读写,当前数据记录可自由移动,可看到新增记录
B:
ADLOCKREADONLY(=1)
缺省锁定类型,记录集是只读的,不能修改记录
ADLOCKPESSIMISTIC(=2)
悲观锁定,当修改记录时,数据提供者将尝试锁定记录以确保成功地编辑记录。只要编辑一开始,则立即锁住记录。
ADLOCKOPTIMISTIC(=3)
乐观锁定 ,直到用Update方法提交更新记录时才锁定记录。
ADLOCKBATCHOPTIMISTIC(=4)
批量乐观锁定,允许修改多个记录,只有调用UpdateBatch方法后才锁定记录。
当不需要改动任何记录时,应该使用只读的记录集,这样提供者不用做任何检测。
对于一般的使用,乐观的锁定可能是最好的选择,因为记录只被锁定一小段时间,
数据在这段时间被更新。这减少了资源的使用。
Java中的锁主要包括synchronized锁和JUC包中的锁,这些锁都是针对单个JVM实例上的锁,对于分布式环境如果我们需要加锁就显得无能为力。在单个JVM实例上,锁的竞争者通常是一些不同的线程,而在分布式环境中,锁的竞争者通常是一些不同的线程或者进程。如何实现在分布式环境中对一个对象进行加锁呢?答案就是分布式锁。
目前分布式锁的实现方案主要包括三种:
基于数据库实现分布式锁主要是利用数据库的唯一索引来实现,唯一索引天然具有排他性,这刚好符合我们对锁的要求:同一时刻只能允许一个竞争者获取锁。加锁时我们在数据库中插入一条锁记录,利用业务id进行防重。当第一个竞争者加锁成功后,第二个竞争者再来加锁就会抛出唯一索引冲突,如果抛出这个异常,我们就判定当前竞争者加锁失败。防重业务id需要我们自己来定义,例如我们的锁对象是一个方法,则我们的业务防重id就是这个方法的名字,如果锁定的对象是一个类,则业务防重id就是这个类名。
基于缓存实现分布式锁:理论上来说使用缓存来实现分布式锁的效率最高,加锁速度最快,因为Redis几乎都是纯内存 *** 作,而基于数据库的方案和基于Zookeeper的方案都会涉及到磁盘文件IO,效率相对低下。一般使用Redis来实现分布式锁都是利用Redis的 SETNX key value 这个命令,只有当key不存在时才会执行成功,如果key已经存在则命令执行失败。
基于Zookeeper:Zookeeper一般用作配置中心,其实现分布式锁的原理和Redis类似,我们在Zookeeper中创建瞬时节点,利用节点不能重复创建的特性来保证排他性。
在实现分布式锁的时候我们需要考虑一些问题,例如:分布式锁是否可重入,分布式锁的释放时机,分布式锁服务端是否有单点问题等。
上面已经分析了基于数据库实现分布式锁的基本原理:通过唯一索引保持排他性,加锁时插入一条记录,解锁是删除这条记录。下面我们就简要实现一下基于数据库的分布式锁。
id字段是数据库的自增id,unique_mutex字段就是我们的防重id,也就是加锁的对象,此对象唯一。在这张表上我们加了一个唯一索引,保证unique_mutex唯一性。holder_id代表竞争到锁的持有者id。
如果当前sql执行成功代表加锁成功,如果抛出唯一索引异常(DuplicatedKeyException)则代表加锁失败,当前锁已经被其他竞争者获取。
解锁很简单,直接删除此条记录即可。
是否可重入 :就以上的方案来说,我们实现的分布式锁是不可重入的,即是是同一个竞争者,在获取锁后未释放锁之前再来加锁,一样会加锁失败,因此是不可重入的。解决不可重入问题也很简单:加锁时判断记录中是否存在unique_mutex的记录,如果存在且holder_id和当前竞争者id相同,则加锁成功。这样就可以解决不可重入问题。
锁释放时机 :设想如果一个竞争者获取锁时候,进程挂了,此时distributed_lock表中的这条记录就会一直存在,其他竞争者无法加锁。为了解决这个问题,每次加锁之前我们先判断已经存在的记录的创建时间和当前系统时间之间的差是否已经超过超时时间,如果已经超过则先删除这条记录,再插入新的记录。另外在解锁时,必须是锁的持有者来解锁,其他竞争者无法解锁。这点可以通过holder_id字段来判定。
数据库单点问题 :单个数据库容易产生单点问题:如果数据库挂了,我们的锁服务就挂了。对于这个问题,可以考虑实现数据库的高可用方案,例如MySQL的MHA高可用解决方案。
使用Jedis来和Redis通信。
可以看到,我们加锁就一行代码:
jedisset(String key, String value, String nxxx, String expx, int time);
这个set()方法一共五个形参:
第一个为key,我们使用key来当锁,因为key是唯一的。
第二个为value,这里写的是锁竞争者的id,在解锁时,我们需要判断当前解锁的竞争者id是否为锁持有者。
第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set *** 作;若key已经存在,则不做任何 *** 作。
第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期时间的设置,具体时间由第五个参数决定;
第五个参数为time,与第四个参数相呼应,代表key的过期时间。
总的来说,执行上面的set()方法就只会导致两种结果:1当前没有锁(key不存在),那么久进行加锁 *** 作,并对锁设置一个有效期,同时value表示加锁的客户端。2已经有锁存在,不做任何 *** 作。
上述解锁请求中, SET_IF_NOT_EXIST (不存在则执行)保证了加锁请求的排他性,缓存超时机制保证了即使一个竞争者加锁之后挂了,也不会产生死锁问题:超时之后其他竞争者依然可以获取锁。通过设置value为竞争者的id,保证了只有锁的持有者才能来解锁,否则任何竞争者都能解锁,那岂不是乱套了。
解锁的步骤:
注意到这里解锁其实是分为2个步骤,涉及到解锁 *** 作的一个原子性 *** 作问题。这也是为什么我们解锁的时候用Lua脚本来实现,因为Lua脚本可以保证 *** 作的原子性。那么这里为什么需要保证这两个步骤的 *** 作是原子 *** 作呢?
设想:假设当前锁的持有者是竞争者1,竞争者1来解锁,成功执行第1步,判断自己就是锁持有者,这是还未执行第2步。这是锁过期了,然后竞争者2对这个key进行了加锁。加锁完成后,竞争者1又来执行第2步,此时错误产生了:竞争者1解锁了不属于自己持有的锁。可能会有人问为什么竞争者1执行完第1步之后突然停止了呢?这个问题其实很好回答,例如竞争者1所在的JVM发生了GC停顿,导致竞争者1的线程停顿。这样的情况发生的概率很低,但是请记住即使只有万分之一的概率,在线上环境中完全可能发生。因此必须保证这两个步骤的 *** 作是原子 *** 作。
是否可重入 :以上实现的锁是不可重入的,如果需要实现可重入,在 SET_IF_NOT_EXIST 之后,再判断key对应的value是否为当前竞争者id,如果是返回加锁成功,否则失败。
锁释放时机 :加锁时我们设置了key的超时,当超时后,如果还未解锁,则自动删除key达到解锁的目的。如果一个竞争者获取锁之后挂了,我们的锁服务最多也就在超时时间的这段时间之内不可用。
Redis单点问题 :如果需要保证锁服务的高可用,可以对Redis做高可用方案:Redis集群+主从切换。目前都有比较成熟的解决方案。
利用Zookeeper创建临时有序节点来实现分布式锁:
其基本思想类似于AQS中的等待队列,将请求排队处理。其流程图如下:
解决不可重入 :客户端加锁时将主机和线程信息写入锁中,下一次再来加锁时直接和序列最小的节点对比,如果相同,则加锁成功,锁重入。
锁释放时机 :由于我们创建的节点是顺序临时节点,当客户端获取锁成功之后突然session会话断开,ZK会自动删除这个临时节点。
单点问题 :ZK是集群部署的,主要一半以上的机器存活,就可以保证服务可用性。
Zookeeper第三方客户端curator中已经实现了基于Zookeeper的分布式锁。利用curator加锁和解锁的代码如下:
数据库是一个多用户使用的共享资源。当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发 *** 作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。
加锁是实现数据库并发控制的一个非常重要的技术。当事务在对某个数据对象进行 *** 作前,先向系统发出请求,对其加锁。加锁后事务就对该数据对象有了一定的控制,在该事务释放锁之前,其他的事务不能对此数据对象进行更新 *** 作。
在数据库中有两种基本的锁类型:排它锁(Exclusive Locks,即X锁)和共享锁(Share Locks,即S锁)。当数据对象被加上排它锁时,其他的事务不能对它读取和修改。加了共享锁的数据对象可以被其他事务读取,但不能修改。数据库利用这两种基本的锁类型来对数据库的事务进行并发控制。
扩展资料:
排它锁和共享锁的不同之处:
1、共享锁(S锁):如果事务T对数据A加上共享锁后,则其他事务只能对A再加共享锁,不能加排他锁。获准共享锁的事务只能读数据,不能修改数据。
排他锁(X锁):如果事务T对数据A加上排他锁后,则其他事务不能再对A加任任何类型的封锁。获准排他锁的事务既能读数据,又能修改数据。
2、共享锁下其它用户可以并发读取,查询数据。但不能修改,增加,删除数据,资源共享。
3、共享锁又称为读锁(Share lock,简记为S锁),若事务T对数据对象A加上S锁,则其它事务只能再对A加S锁,而不能加X锁,直到T释放A上的S锁。
参考资料:
参考资料:
如一个金融系统,当某个 *** 作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个 *** 作过 程中(从 *** 作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括 *** 作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。
乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本 ( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。
读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。
对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。
1 *** 作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
2 在 *** 作员 A *** 作的过程中, *** 作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
3 *** 作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
4 *** 作员 B 完成了 *** 作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现, *** 作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此, *** 作员 B 的提交被驳回。
这样,就避免了 *** 作员 B 用基于 version=1 的旧数据修改的结果覆盖 *** 作员A 的 *** 作结果的可能。
以上就是关于MySQL数据库表锁定的几种方法实现全部的内容,包括:MySQL数据库表锁定的几种方法实现、一文详解-MySQL 事务和锁、数据库 对某条记录实现锁机制等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)