如果有关表或索引的统计信息已过时或者不完整,则会导致优化器选择不是最佳的方案,并且会降低 执行查询的速度。当数据库里某个表中的记录变化量很大时,需要在表上做REORG *** 作来优化数据库性能。
#db2 reorg table 表名 //通过重构行来消除“碎片”数据
#db2 reorg indexes all for table 表名 //只重组索引
比如:reorg table HDXTPFSFTCJRN INDEX HDXTIDX_WATER_1 use tempspace1
reorg table HDXTPFSFTCJRN use tempspace1
将根据索引by_id,如果不加INDEX选项将重组表和所有的索引
reorg table db2inst1org index by_id use tempspace1
使用指定的临时表空间重组表
表重组完成后需要进行RUNSTATS。另外,记住在分区数据库环境中,如果想在所有节点运行命令,需要使用db2_all命令。
reorg table 表名 index 索引名 use tempspace1
使用指定的临时表空间重组表
数据库设计(Database Design)是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,使之能够有效地存储数据,满足各种用户的应用需求(信息要求和处理要求)。
在数据库领域内,常常把使用数据库的各类系统统称为数据库应用系统。
一、数据库和信息系统
(1)数据库是信息系统的核心和基础,把信息系统中大量的数据按一定的模型组织起来,提供存储、维护、检索数据的
功能,使信息系统可以方便、及时、准确地从数据库中获得所需的信息。
(2)数据库是信息系统的各个部分能否紧密地结合在一起以及如何结合的关键所在。
(3)数据库设计是信息系统开发和建设的重要组成部分。
(4)数据库设计人员应该具备的技术和知识:
数据库的基本知识和数据库设计技术
计算机科学的基础知识和程序设计的方法和技巧
软件工程的原理和方法
应用领域的知识
二、数据库设计的特点
数据库建设是硬件、软件和干件的结合
三分技术,七分管理,十二分基础数据
技术与管理的界面称之为“干件”
数据库设计应该与应用系统设计相结合
结构(数据)设计:设计数据库框架或数据库结构
行为(处理)设计:设计应用程序、事务处理等
结构和行为分离的设计
传统的软件工程忽视对应用中数据语义的分析和抽象,只要有可能就尽量推迟数据结构设计的决策早期的数据库设计致力于数据模型和建模方法研究,忽视了对行为的设计
如图:
三、数据库设计方法简述
手工试凑法
设计质量与设计人员的经验和水平有直接关系
缺乏科学理论和工程方法的支持,工程的质量难以保证
数据库运行一段时间后常常又不同程度地发现各种问题,增加了维护代价
规范设计法
手工设计方
基本思想
过程迭代和逐步求精
规范设计法(续)
典型方法:
(1)新奥尔良(New Orleans)方法:将数据库设计分为四个阶段
SBYao方法:将数据库设计分为五个步骤
IRPalmer方法:把数据库设计当成一步接一步的过程
(2)计算机辅助设计
ORACLE Designer 2000
SYBASE PowerDesigner
四、数据库设计的基本步骤
数据库设计的过程(六个阶段)
1需求分析阶段
准确了解与分析用户需求(包括数据与处理)
是整个设计过程的基础,是最困难、最耗费时间的一步
2概念结构设计阶段
是整个数据库设计的关键
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型
3逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型
对其进行优化
4数据库物理设计阶段
为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)
5数据库实施阶段
运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果
建立数据库,编制与调试应用程序,组织数据入库,并进行试运行
6数据库运行和维护阶段
数据库应用系统经过试运行后即可投入正式运行。
在数据库系统运行过程中必须不断地对其进行评价、调整与修改
设计特点:
在设计过程中把数据库的设计和对数据库中数据处理的设计紧密结合起来将这两个方面的需求分析、抽象、设计、实现在各个阶段同时进行,相互参照,相互补充,以完善两方面的设计
设计过程各个阶段的设计描述:
如图:
五、数据库各级模式的形成过程
1需求分析阶段:综合各个用户的应用需求
2概念设计阶段:形成独立于机器特点,独立于各个DBMS产品的概念模式(E-R图)
3逻辑设计阶段:首先将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式;然后根据用户处理的要求、安全性的考虑,在基本表的基础上再建立必要的视图(View),形成数据的外模式
4物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式
六、数据库设计技巧
1 设计数据库之前(需求分析阶段)
1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。
2) 了解企业业务可以在以后的开发阶段节约大量的时间。
3) 重视输入输出。
在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。
举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。
4) 创建数据字典和ER 图表
ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。
5) 定义标准的对象命名规范
数据库各种对象的命名必须规范。
2 表和字段的设计(数据库逻辑设计)
表设计原则
1) 标准化和规范化
数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。
举例:某个存放客户及其有关定单的3NF 数据库就可能有两个表:Customer 和Order。Order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向Customer 表里包含该客户信息的那一行。
事实上,为了效率的缘故,对表不进行标准化有时也是必要的。
2) 数据驱动
采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。
举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。
3) 考虑各种变化
在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。
举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。
字段设计原则
4) 每个表中都应该添加的3 个有用的字段
dRecordCreationDate,在VB 下默认是Now(),而在SQL Server • 下默认为GETDATE()
sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT • USER
nRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因 •
5) 对地址和电话采用多个字段
描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。
6) 使用角色实体定义属于某类别的列
在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。
举例:用PERSON 实体和PERSON_TYPE 实体来描述人员。比方说,当John Smith, Engineer 提升为John Smith, Director 乃至最后爬到John Smith, CIO 的高位,而所有你要做的不过是改变两个表PERSON 和PERSON_TYPE 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的PERSON_TYPE 表就包含了所有PERSON 的可能类型,比如Associate、Engineer、Director、CIO 或者CEO 等。还有个替代办法就是改变PERSON 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。
7) 选择数字类型和文本类型尽量充足
在SQL 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算 *** 作了。
而ID 类型的文本字段,比如客户ID 或定单号等等都应该设置得比一般想象更大。假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。
8) 增加删除标记字段
在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。
3 选择键和索引(数据库逻辑设计)
键选择原则:
1) 键设计4 原则
为关联字段创建外键。 •
所有的键都必须唯一。 •
避免使用复合键。 •
外键总是关联唯一的键字段。 •
2) 使用系统生成的主键
设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,找到逻辑缺陷很容易。
3) 不要用用户的键(不让主键具有可更新性)
在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。
4) 可选键有时可做主键
把可选键进一步用做主键,可以拥有建立强大索引的能力。
索引使用原则:
索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。
1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。
2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。
3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。
4) 不要索引常用的小型表
不要为小型数据表设置任何键,假如它们经常有插入和删除 *** 作就更别这样作了。对这些插入和删除 *** 作的索引维护可能比扫描表空间消耗更多的时间。
4 数据完整性设计(数据库逻辑设计)
1) 完整性实现机制:
实体完整性:主键
参照完整性:
父表中删除数据:级联删除;受限删除;置空值
父表中插入数据:受限插入;递归插入
父表中更新数据:级联更新;受限更新;置空值
DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制
用户定义完整性:
NOT NULL;CHECK;触发器
2) 用约束而非商务规则强制数据完整性
采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。
3) 强制指示完整性
在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。
4) 使用查找控制数据完整性
控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。
5) 采用视图
为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。
5 其他设计技巧
1) 避免使用触发器
触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。
2) 使用常用英语(或者其他任何语言)而不要使用编码
在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。
3) 保存常用信息
让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。
4) 包含版本机制
在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。
5) 编制文档
对所有的快捷方式、命名规范、限制和函数都要编制文档。
采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。
对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。
6) 测试、测试、反复测试
建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。
7) 检查设计
在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。
我来说下吧,双破解版属于破解版的一种。是目前比较全面的破解方式。双破解即是光驱破解和硬盘破解。光驱破解可以玩D版盘,硬盘破解可以把游戏拷到硬盘里玩。因为目前技术有限,任何一种单一破解都不能玩遍全部游戏,所以双破解就可以很好地进行互补。
一、数据库设计过程
数据库技术是信息资源管理最有效的手段。数据库设计是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,有效存储数据,满足用户信息要求和处理要求。
数据库设计中需求分析阶段综合各个用户的应用需求(现实世界的需求),在概念设计阶段形成独立于机器特点、独立于各个DBMS产品的概念模式(信息世界模型),用E-R图来描述。在逻辑设计阶段将E-R图转换成具体的数据库产品支持的数据模型如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。在物理设计阶段根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。
1 需求分析阶段
需求收集和分析,结果得到数据字典描述的数据需求(和数据流图描述的处理需求)。
需求分析的重点是调查、收集与分析用户在数据管理中的信息要求、处理要求、安全性与完整性要求。
需求分析的方法:调查组织机构情况、调查各部门的业务活动情况、协助用户明确对新系统的各种要求、确定新系统的边界。
常用的调查方法有: 跟班作业、开调查会、请专人介绍、询问、设计调查表请用户填写、查阅记录。
分析和表达用户需求的方法主要包括自顶向下和自底向上两类方法。自顶向下的结构化分析方法(Structured Analysis,简称SA方法)从最上层的系统组织机构入手,采用逐层分解的方式分析系统,并把每一层用数据流图和数据字典描述。
数据流图表达了数据和处理过程的关系。系统中的数据则借助数据字典(Data Dictionary,简称DD)来描述。
数据字典是各类数据描述的集合,它是关于数据库中数据的描述,即元数据,而不是数据本身。数据字典通常包括数据项、数据结构、数据流、数据存储和处理过程五个部分(至少应该包含每个字段的数据类型和在每个表内的主外键)。
数据项描述={数据项名,数据项含义说明,别名,数据类型,长度,
取值范围,取值含义,与其他数据项的逻辑关系}
数据结构描述={数据结构名,含义说明,组成:{数据项或数据结构}}
数据流描述={数据流名,说明,数据流来源,数据流去向,
组成:{数据结构},平均流量,高峰期流量}
数据存储描述={数据存储名,说明,编号,流入的数据流,流出的数据流,
组成:{数据结构},数据量,存取方式}
处理过程描述={处理过程名,说明,输入:{数据流},输出:{数据流},
处理:{简要说明}}
2 概念结构设计阶段
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型,可以用E-R图表示。
概念模型用于信息世界的建模。概念模型不依赖于某一个DBMS支持的数据模型。概念模型可以转换为计算机上某一DBMS支持的特定数据模型。
概念模型特点:
(1) 具有较强的语义表达能力,能够方便、直接地表达应用中的各种语义知识。
(2) 应该简单、清晰、易于用户理解,是用户与数据库设计人员之间进行交流的语言。
概念模型设计的一种常用方法为IDEF1X方法,它就是把实体-联系方法应用到语义数据模型中的一种语义模型化技术,用于建立系统信息模型。
使用IDEF1X方法创建E-R模型的步骤如下所示:
21 第零步——初始化工程
这个阶段的任务是从目的描述和范围描述开始,确定建模目标,开发建模计划,组织建模队伍,收集源材料,制定约束和规范。收集源材料是这阶段的重点。通过调查和观察结果,业务流程,原有系统的输入输出,各种报表,收集原始数据,形成了基本数据资料表。
22 第一步——定义实体
实体集成员都有一个共同的特征和属性集,可以从收集的源材料——基本数据资料表中直接或间接标识出大部分实体。根据源材料名字表中表示物的术语以及具有“代码”结尾的术语,如客户代码、代理商代码、产品代码等将其名词部分代表的实体标识出来,从而初步找出潜在的实体,形成初步实体表。
23 第二步——定义联系
IDEF1X模型中只允许二元联系,n元联系必须定义为n个二元联系。根据实际的业务需求和规则,使用实体联系矩阵来标识实体间的二元关系,然后根据实际情况确定出连接关系的势、关系名和说明,确定关系类型,是标识关系、非标识关系(强制的或可选的)还是非确定关系、分类关系。如果子实体的每个实例都需要通过和父实体的关系来标识,则为标识关系,否则为非标识关系。非标识关系中,如果每个子实体的实例都与而且只与一个父实体关联,则为强制的,否则为非强制的。如果父实体与子实体代表的是同一现实对象,那么它们为分类关系。
24 第三步——定义码
通过引入交叉实体除去上一阶段产生的非确定关系,然后从非交叉实体和独立实体开始标识侯选码属性,以便唯一识别每个实体的实例,再从侯选码中确定主码。为了确定主码和关系的有效性,通过非空规则和非多值规则来保证,即一个实体实例的一个属性不能是空值,也不能在同一个时刻有一个以上的值。找出误认的确定关系,将实体进一步分解,最后构造出IDEF1X模型的键基视图(KB图)。
25 第四步——定义属性
从源数据表中抽取说明性的名词开发出属性表,确定属性的所有者。定义非主码属性,检查属性的非空及非多值规则。此外,还要检查完全依赖函数规则和非传递依赖规则,保证一个非主码属性必须依赖于主码、整个主码、仅仅是主码。以此得到了至少符合关系理论第三范式的改进的IDEF1X模型的全属性视图。
26 第五步——定义其他对象和规则
定义属性的数据类型、长度、精度、非空、缺省值、约束规则等。定义触发器、存储过程、视图、角色、同义词、序列等对象信息。
3 逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型(例如关系模型),并对其进行优化。设计逻辑结构应该选择最适于描述与表达相应概念结构的数据模型,然后选择最合适的DBMS。
将E-R图转换为关系模型实际上就是要将实体、实体的属性和实体之间的联系转化为关系模式,这种转换一般遵循如下原则:
1)一个实体型转换为一个关系模式。实体的属性就是关系的属性。实体的码就是关系的码。
2)一个m:n联系转换为一个关系模式。与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性。而关系的码为各实体码的组合。
3)一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。如果转换为一个独立的关系模式,则与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性,而关系的码为n端实体的码。
4)一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。
5)三个或三个以上实体间的一个多元联系转换为一个关系模式。与该多元联系相连的各实体的码以及联系本身的属性均转换为关系的属性。而关系的码为各实体码的组合。
6)同一实体集的实体间的联系,即自联系,也可按上述1:1、1:n和m:n三种情况分别处理。
7)具有相同码的关系模式可合并。
为了进一步提高数据库应用系统的性能,通常以规范化理论为指导,还应该适当地修改、调整数据模型的结构,这就是数据模型的优化。确定数据依赖。消除冗余的联系。确定各关系模式分别属于第几范式。确定是否要对它们进行合并或分解。一般来说将关系分解为3NF的标准,即:
表内的每一个值都只能被表达一次。
•表内的每一行都应该被唯一的标识(有唯一键)。
表内不应该存储依赖于其他键的非键信息。
4 数据库物理设计阶段
为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。
5 数据库实施阶段
运用DBMS提供的数据语言(例如SQL)及其宿主语言(例如C),根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行。 数据库实施主要包括以下工作:用DDL定义数据库结构、组织数据入库 、编制与调试应用程序、数据库试运行
6 数据库运行和维护阶段
数据库应用系统经过试运行后即可投入正式运行。在数据库系统运行过程中必须不断地对其进行评价、调整与修改。包括:数据库的转储和恢复、数据库的安全性、完整性控制、数据库性能的监督、分析和改进、数据库的重组织和重构造。
建模工具的使用
为加快数据库设计速度,目前有很多数据库辅助工具(CASE工具),如Rational公司的Rational Rose,CA公司的Erwin和Bpwin,Sybase公司的PowerDesigner以及Oracle公司的Oracle Designer等。
ERwin主要用来建立数据库的概念模型和物理模型。它能用图形化的方式,描述出实体、联系及实体的属性。ERwin支持IDEF1X方法。通过使用ERwin建模工具自动生成、更改和分析IDEF1X模型,不仅能得到优秀的业务功能和数据需求模型,而且可以实现从IDEF1X模型到数据库物理设计的转变。ERwin工具绘制的模型对应于逻辑模型和物理模型两种。在逻辑模型中,IDEF1X工具箱可以方便地用图形化的方式构建和绘制实体联系及实体的属性。在物理模型中,ERwin可以定义对应的表、列,并可针对各种数据库管理系统自动转换为适当的类型。
设计人员可根据需要选用相应的数据库设计建模工具。例如需求分析完成之后,设计人员可以使用Erwin画ER图,将ER图转换为关系数据模型,生成数据库结构;画数据流图,生成应用程序。
二、数据库设计技巧
1 设计数据库之前(需求分析阶段)
1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。
2) 了解企业业务可以在以后的开发阶段节约大量的时间。
3) 重视输入输出。
在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。
举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。
4) 创建数据字典和ER 图表
ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。
5) 定义标准的对象命名规范
数据库各种对象的命名必须规范。
2 表和字段的设计(数据库逻辑设计)
表设计原则
1) 标准化和规范化
数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。
举例:某个存放客户及其有关定单的3NF 数据库就可能有两个表:Customer 和Order。Order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向Customer 表里包含该客户信息的那一行。
事实上,为了效率的缘故,对表不进行标准化有时也是必要的。
2) 数据驱动
采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。
举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。
3) 考虑各种变化
在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。
举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。
字段设计原则
4) 每个表中都应该添加的3 个有用的字段
•dRecordCreationDate,在VB 下默认是Now(),而在SQL Server 下默认为GETDATE()
•sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT USER
•nRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因
5) 对地址和电话采用多个字段
描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。
6) 使用角色实体定义属于某类别的列
在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。
举例:用PERSON 实体和PERSON_TYPE 实体来描述人员。比方说,当John Smith, Engineer 提升为John Smith, Director 乃至最后爬到John Smith, cio 的高位,而所有你要做的不过是改变两个表PERSON 和PERSON_TYPE 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的PERSON_TYPE 表就包含了所有PERSON 的可能类型,比如Associate、Engineer、Director、CIO 或者CEO 等。还有个替代办法就是改变PERSON 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。
7) 选择数字类型和文本类型尽量充足
在SQL 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算 *** 作了。
而ID 类型的文本字段,比如客户ID 或定单号等等都应该设置得比一般想象更大。假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。
8) 增加删除标记字段
在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。
3 选择键和索引(数据库逻辑设计)
键选择原则:
1) 键设计4 原则
•为关联字段创建外键。
•所有的键都必须唯一。
•避免使用复合键。
•外键总是关联唯一的键字段。
2) 使用系统生成的主键
设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,找到逻辑缺陷很容易。
3) 不要用用户的键(不让主键具有可更新性)
在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。
4) 可选键有时可做主键
把可选键进一步用做主键,可以拥有建立强大索引的能力。
索引使用原则:
索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。
1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。
2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。
3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。
4) 不要索引常用的小型表
不要为小型数据表设置任何键,假如它们经常有插入和删除 *** 作就更别这样作了。对这些插入和删除 *** 作的索引维护可能比扫描表空间消耗更多的时间。
4 数据完整性设计(数据库逻辑设计)
1) 完整性实现机制:
实体完整性:主键
参照完整性:
父表中删除数据:级联删除;受限删除;置空值
父表中插入数据:受限插入;递归插入
父表中更新数据:级联更新;受限更新;置空值
DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制
用户定义完整性:
NOT NULL;CHECK;触发器
2) 用约束而非商务规则强制数据完整性
采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。
3) 强制指示完整性
在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。
4) 使用查找控制数据完整性
控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。
5) 采用视图
为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。
5 其他设计技巧
1) 避免使用触发器
触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。
2) 使用常用英语(或者其他任何语言)而不要使用编码
在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。
3) 保存常用信息
让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。
4) 包含版本机制
在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。
5) 编制文档
对所有的快捷方式、命名规范、限制和函数都要编制文档。
采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。
对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。
6) 测试、测试、反复测试
建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。
7) 检查设计
在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。
三、数据库命名规范
1 实体(表)的命名
1) 表以名词或名词短语命名,确定表名是采用复数还是单数形式,此外给表的别名定义简单规则(比方说,如果表名是一个单词,别名就取单词的前4 个字母;如果表名是两个单词,就各取两个单词的前两个字母组成4 个字母长的别名;如果表的名字由3 个单词组成,从头两个单词中各取一个然后从最后一个单词中再取出两个字母,结果还是组成4 字母长的别名,其余依次类推)
对工作用表来说,表名可以加上前缀WORK_ 后面附上采用该表的应用程序的名字。在命名过程当中,根据语义拼凑缩写即可。注意,由于ORCLE会将字段名称统一成大写或者小写中的一种,所以要求加上下划线。
举例:
定义的缩写 Sales: Sal 销售;
Order: Ord 订单;
Detail: Dtl 明细;
则销售订单明细表命名为:Sal_Ord_Dtl;
2) 如果表或者是字段的名称仅有一个单词,那么建议不使用缩写,而是用完整的单词。
举例:
定义的缩写 Material Ma 物品;
物品表名为:Material, 而不是 Ma
但是字段物品编码则是:Ma_ID;而不是Material_ID
3) 所有的存储值列表的表前面加上前缀Z
目的是将这些值列表类排序在数据库最后。
4) 所有的冗余类的命名(主要是累计表)前面加上前缀X
冗余类是为了提高数据库效率,非规范化数据库的时候加入的字段或者表
5) 关联类通过用下划线连接两个基本类之后,再加前缀R的方式命名,后面按照字母顺序罗列两个表名或者表名的缩写。
关联表用于保存多对多关系。
如果被关联的表名大于10个字母,必须将原来的表名的进行缩写。如果没有其他原因,建议都使用缩写。
举例:表Object与自身存在多对多的关系,则保存多对多关系的表命名为:R_Object;
表 Depart和Employee;存在多对多的关系;则关联表命名为R_Dept_Emp
2 属性(列)的命名
1) 采用有意义的列名,表内的列要针对键采用一整套设计规则。每一个表都将有一个自动ID作为主健,逻辑上的主健作为第一组候选主健来定义,如果是数据库自动生成的编码,统一命名为:ID;如果是自定义的逻辑上的编码则用缩写加“ID”的方法命名。如果键是数字类型,你可以用_NO 作为后缀;如果是字符类型则可以采用_CODE 后缀。对列名应该采用标准的前缀和后缀。
举例:销售订单的编号字段命名:Sal_Ord_ID;如果还存在一个数据库生成的自动编号,则命名为:ID。
2) 所有的属性加上有关类型的后缀,注意,如果还需要其它的后缀,都放在类型后缀之前。
注: 数据类型是文本的字段,类型后缀TX可以不写。有些类型比较明显的字段,可以不写类型后缀。
3) 采用前缀命名
给每个表的列名都采用统一的前缀,那么在编写SQL表达式的时候会得到大大的简化。这样做也确实有缺点,比如破坏了自动表连接工具的作用,后者把公共列名同某些数据库联系起来。
3 视图的命名
1) 视图以V作为前缀,其他命名规则和表的命名类似;
2) 命名应尽量体现各视图的功能。
4 触发器的命名
触发器以TR作为前缀,触发器名为相应的表名加上后缀,Insert触发器加'_I',Delete触发器加'_D',Update触发器加'_U',如:TR_Customer_I,TR_Customer_D,TR_Customer_U。
5 存储过程名
存储过程应以'UP_'开头,和系统的存储过程区分,后续部分主要以动宾形式构成,并用下划线分割各个组成部分。如增加代理商的帐户的存储过程为'UP_Ins_Agent_Account'。
6 变量名
变量名采用小写,若属于词组形式,用下划线分隔每个单词,如@my_err_no。
7 命名中其他注意事项
1) 以上命名都不得超过30个字符的系统限制。变量名的长度限制为29(不包括标识字符@)。
2) 数据对象、变量的命名都采用英文字符,禁止使用中文命名。绝对不要在对象名的字符之间留空格。
3) 小心保留词,要保证你的字段名没有和保留词、数据库系统或者常用访问方法冲突
5) 保持字段名和类型的一致性,在命名字段并为其指定数据类型的时候一定要保证一致性。假如数据类型在一个表里是整数,那在另一个表里可就别变成字符型了。
1 数据库定义:数据库是长期储存在计算机内、有组织的、可共享的大量数据的集合。数据库中的数据按一定的数据模型组织、描述和储存,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。2 数据库管理技术发展的三个阶段:人工管理阶段,文件系统阶段,数据库系统阶段。3 DBMS(数据库管理系统)是位于用户与 *** 作系统之间的一层数据管理软件。主要功能:1,数据定义功能。2,数据组织、存储和管理。3,数据 *** 纵功能。4,数据库的事务管理和运行管理。5,数据库的建立和维护功能。6,其他功能。4 什么是数据模型及其要素 (设计题): 数据模型是数据库中用来对现实世界进行抽象的工具,是数据库中用于提供信息表示和 *** 作手段的形式构架。一般地讲,数据模型是严格定义的概念的集合。这些概 念精确地描述系统的静态特性、动态特性和完整性约束条件。因此数据模型通常由数据结构、数据 *** 作和完整性约束三部分组成。 (1)数据结构:是所研究的对象类型的集合,是对系统的静态特性的描述。 (2)数据 *** 作:是指对数据库中各种对象(型)的实例(值)允许进行的 *** 作的集合,包括 *** 作及有关的 *** 作规则,是对系统动态特性的描述。 (3)数据的约束条件:是完整性规则的集合,完整性规则是给定的数据模型中数据及其联系所具有的制约和依存规则,用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。最常用的数据模型:层次模型,网状模型,关系模型,面积对象模型,对象关系模型。5常用的数据模型有哪些(逻辑模型是主要的),各有什么特征,数据结构是什么样的。答:数据模型可分为两类:第一类是概念模型,也称信息模型,它是按用户的观点来地数据和信息建模,主要用于数据库设计。第二类是逻辑模型和物理模型。其中逻辑模型主要包括层次模型、层次模型、关系模型、面向对象模型和对象关系模型等。它是按计算机系统的观点对数据建模,主要用于DBMS的实现。物理模型是对数据最低层的抽象,它描述数据在系统内部的表示方式和存取方法,在磁盘或磁带上的存储方式和存取方法,是面向计算机系统的。物理模型是具体实现是DBMS的任务,数据库设计人员要了解和选择物理醋,一般用户则不必考虑物理级的细节。层次数据模型的数据结构特点:一是:有且只有一个结点没有双亲结点,这个结点称为根结点。二是:根 以外的其他结点有且只有一个双亲结点。优点是:1层次 数据结构比较简单清晰。2层次数据库的查询效率高。3层次数据模型提供了良好的完整性支持。缺点主要有:1现实世界中很多联系是非层次性的,如结点之间具有多对多联系。2一个结点具有多个双亲等 ,层次模型表示这类联系的方法很笨拙,只能通过引入冗余数据或创建非自然的数据结构来解决。对插入和删除 *** 作的限制比较多,因此应用程序的编写比较复杂。3查询子女结点必须通过双亲结点。4由于结构严密,层次命令趋于程序化。可见用层次模型对具有一对多的层次联系的部门描述非常自然,直观容易理解,这是层次数据库的突出优点。网状模型:特点:1允许一个以上的结点无双亲2一个结点可以有多于一个的双亲。网状数据模型的优点主要有:1能够更为直接地描述现实世界,如一个结点可以有多个双亲。结点
之间可以有多种上联第。2具有良好的性能,存取效率较高。缺点主要有:1结构比较复杂,而且随着应用环境的扩大,数据库的结构就变得越来越复杂,不利于最终 用户掌握。2网状模型的DDL,DML复杂,并且要嵌入某一种高级语言中,用户不容易掌握,不容易使用。关系数据模型具有下列优点:1关系模型与非关系模型不同,它是建立在严格的数学概念的基础上的。2关系模型的概念单一。。3关系模型的存取路径对用户透明,从而具有更高的数据独立性,更好的安全保密性,也简化了程序员的工作和数据库开发的建立 的工作。。主要的缺点是:由于存取路径房租明,查询效率往往不如非关系数据模型。因此为了提高性能,DBMS必须对用户的查询请求进行优化。因此增加 了开发DBMS的难度,不过用户不必考虑这些系统内部的优化技术细节。6三级体系结构,外模式,模式 ,内模式定义是什么?模式也称逻辑模式,是数据库中全体数据的逻辑结构和牲的描述,是所有用户的公共数据视图。 外模式也称子模式或用户模式,它是数据库用户能够看见和使用的局部数据的逻辑结构和特征的描述,是数据库用户的数据视图是与某一应用有关的数据的逻辑表示。 内模式也称存储模式 ,是一个数据库只有一个内模式。它是数据物理结构和存储方式的描述,是数据在数据库内部的表示方式。7两级映像和两级独立性,为什么叫物理独立性和逻辑独立性。当模式改变时由数据库管理员对各个外模式、模式的映像亻相应改变,可以使外模式保持不变。应用程序是依据数据的外模式编写的,从而应用程序不必修改,保证了数据与程序的逻辑独立生,简称数据的逻辑独立性。当数据库的存储结构改变了,由数据库管理员对模式、内模式映像作 相应改变,可以使模式保持不变,从而应用程序也不必改变。保证了数据与程序的物理独立性,简称数据的物理独立性。8数据库系统一般由数据库、数据库管理系统 (及其开发工具)、应用系统和数据库管理员构成。9关系的完整性(实体完整性、参照完整性、和用户定义的完整性)三部分内容,其中前二者是系统自动支持的,DBMS完整性控制子系统的三个主要功能?:提供定义完整性约束条件的机制,提供完整性检查的方法,违约处理。16SQL的定义;即结构化查询语言,是关系数据库的标准语言,是一个通用的、功能极强的关系数据库语言。分类(交互式和嵌入式)17group by 和having子句的作用20视图的概念:视图是从一个或几个基本表导出的表。及相关 *** 作:定义视图,查询视图,更新视图。视图更新有什么 *** 作:插入,删除,和修改。22数据库规范化的方法函数依赖的定义什么叫1NF2NF3NF BCNF定义:关系数据库中的关系是要满足一定要求的,满足不同程度要求的为不同范式。满足最低要求的叫第一范式,简称1NF。在第一范式中满足进一步要求的为第二范式,其余以此类推。各种范式之间的联系有:5NF(4NF(BCNF(3NF(2NF(1NF。25数据库设计的几个阶段,每个阶段常用的方法和简要的内容:六个阶段:需求分析、概念结构设计、罗织结构设计、物理设计、数据库实施、数据库运行和维护。28事务的概念?事务有哪些基本属性commit roll back含义:事务:是用户定义的一个数据库 *** 作序列,这些 *** 作要么全做,要么全不做,是一个不可分割的单位。四个特性:原子性,一致性,隔离性,持续性。Commit(提交:提交事务的所有 *** 作) rollback(回滚:在事务运行的过程中发生了某种故障,事务不能继续执行,系统将事务中对数据库的所有已完成的 *** 作全部撤销,回滚到事务开始时的状态。 29什么叫数据库系统的可恢复性?:数据库管理系统具有把数据库从错误状态恢复到某一已知的正确状态的功能,这就是数据库系统的可恢复性。数据库故障的种类:事务内部的故障,系统故障(软故障),介质故障(硬故障),计算机病毒。30不进行并发控制可能产生的问题?:多个事务对数据库并发 *** 作可能造成事务ACID特点遭到在破坏。如何解决(三个):1,丢失修改 2,不可重复读 3,读“脏”数据。31三级封锁协议?能解决什么问题?:一级封锁协议:事务T在修改数据R之前必须先对其加X锁,直到事务结束才释放。事务结束包括正常结束(COMMIT)和非正常结束(ROLLBACK)。一级封锁协议中,如果是读数据不修改,是不需要加锁的,可防止丢失修改。二级封锁协议:在一级封锁协议基础上,加上事务T在读数据R之前必须先对其加上S锁,读完后即可释放S锁。在二级封锁协议中,由于读完数据后即可释放S锁,所以它不能保证可重复读。三级封锁协议:一级封锁协议加上事务T在读取数据R之前必须先对其加S锁,直到事务结束才释放。三级封锁协议除了防止了丢失修改和不读“脏”数据外,还进一步防止了不可重复读。上述三级协议的主要区别在于:什么 *** 作需要申请封锁,以及何时释放锁。一般采取哪三种措施?插入呢?删除呢?:1,拒绝执行(不允许该 *** 作执行),2,级连 *** 作(当删除或修改被参照表的一个元组造成了与参照表的不一致,则删除或修改参照表中的所有造成不一致的元组),3,设置为空值(当删除或修改被参照表的一个元组时造成了不一致,则将参照表中的所有不造成不一致的元组的对应属性设置为空值)。38视图对数据库安全性的作用?:1,视图能够简化用户的 *** 作,2,视力使用户能以多种角度看待同一数据,3,视图对重构数据库提供了一定程度的逻辑独立性,4,视图能够对机密数据提供安全保护,5,适当的利用视图可以更清晰的表达查询。数据库:储存在计算机内,永久存储、有组织、有共享的大量数据的集合。数据管理技术的发展阶段:1人工管理阶段:数据不保存,应用程序管理数据,数据不共享,数据不具有独立性。2文件系统阶段:数据可以长期保存,由文件系统管理数据;数据共享性太差,冗余度大,数据独立性差。3数据库系统阶段:出现数据库管理系统。数据库系统的特点:数据结构化(本质区别);数据共享性高、冗余度低、易扩充;数据独立性高;数据有DBMS统一管理和控制。数据库管理系统:1定义:DBMS,是位于用户与 *** 作系统之间的一层数据管理软件。2功能:数据定义功能;数据组织、存储和管理;数据 *** 纵功能;数据库的事务管理和运行管理;数据库的建立和维护功能;通信功能、数据转换功能、互访和互 *** 作功能。数据库系统:1概念:DBS,是指在计算机系统中引入数据库后的系统。2组成:一般由数据库、数据库管理系统、应用系统、数据库管理员构成。3分类:集中式,C/S式,并行式,分布式。数据模型:1定义:现实世界数据特征的抽象。2组成,三要素:数据结构、数据 *** 作、数据的完整性约束。两类数据模型为1)概念模型2)逻辑模型和物理模型。数据结构:描述数据库的组成对象以及对象之间的联系,主要描述与对象的类型、内容、性质有关的对象和与数据之间联系有关的对象。常用的数据模型:1层次模型,用树形结构表示各类实体以及实体间的联系。2网状模型,允许一个以上的结点无双亲,允许一个结点可以有多于一个的双亲。3关系模型,包含单一数据结构
是所有的表结构都不一样么?新表中的表结构,包含老表中的结构么?如果只是在老表基础上加了一些新的字段,那么正常导入之后,再重新增加那些新字段就可以了,如果是字段有多有少或者有需要运算的,那就挨个表导入数据吧
以上就是关于数据库表为什么要重组索引重组索引有什么用处全部的内容,包括:数据库表为什么要重组索引重组索引有什么用处、怎样设计一个好的数据库、破解了,手贱PSVpsv破解 重构数据库现在求助等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)