1 Django
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,模板T和视图V。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。Django与其他框架比较,它有个比较独特的特性,支持orm,将数据库的 *** 作封装成为python,对于需要适用多种数据库的应用来说是个比较好的特性。不过这种特性,已经有其他库完成了,sqlalchemy
2Flask
Flask是一个使用Python编写的轻量级Web应用框架。其WSGI工具箱采用Werkzeug,模板引擎则使用Jinja2。Flask使用BSD授权。
Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Flask很轻,花很少的成本就能够开发一个简单的网站。非常适合初学者学习。Flask框架学会以后,可以考虑学习插件的使用。例如使用WTForm+Flask-WTForm来验证表单数据,用SQLAlchemy+Flask-SQLAlchemy来对你的数据库进行控制。
3Tornado
Tornado是一种Web服务器软件的开源版本。Tornado和现在的主流Web服务器框架(包括大多数Python的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其非阻塞的方式和对epoll的运用,Tornado每秒可以处理数以千计的连接,因此Tornado是实时Web服务的一个理想框架。不过现在与众多的框架比较,Tornado已经被抛在了后面,Django已经超过了它,更不说其他框架了,只能说Tornado使用纯python开发的性能还是不能与其他框架借助于cython开发的性能相比。
4webpy
webpy是一个Python的web框架,它简单而且功能强大。webpy是公开的,无论用于什么用途都是没有限制的。而且相当的小巧,应当归属于轻量级的web框架。但这并不影响webpy的强大,而且使用起来很简单、很直接。在实际应用上,webpy更多的是学术上的价值,因为你可以看到更多web应用的底层,这在当今“抽象得很好”的web框架上是学不到的:)
5Aio>
高性能异步web框架,既有客户端的也有服务端的,还支持web-socket
6Sanic
与flask类似,并支持异步
7Vibora
旨在成为最快的pythonweb框架。vibora的高性能依赖于cython实现的uvloop异步框架及cython实现的>
8Bottle
Bottle是一个简单高效的遵循WSGI的微型pythonWeb框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
9Falcon
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
10weppy
性能优于flask的一个全栈web框架
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件 *** 作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:算法&设计模式
阶段八:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段九:机器学习、图像识别、NLP自然语言处理
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图形识别、人工智能玩具开发等。
阶段十:Linux系统&百万级并发架构解决方案
阶段十一:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO *** 作、函数和面向对象、并发编程等。
阶段一、人工智能篇之Python核心
1、Python扫盲
2、面向对象编程基础
3、变量和基本数据类型
4、Python机器学习类库
5、Python控制语句与函数
6、Python数据库 *** 作+正则表达式
7、Lambda表达式、装饰器和Python模块化开发
阶段二、人工智能篇之数据库交互技术
1、初识MySQL数据库
2、创建MySQL数据库和表
3、MySQL数据库数据管理
4、使用事务保证数据完整性
5、使用DQL命令查询数据
6、创建和使用索引
7、MySQL数据库备份和恢复
阶段三、人工智能篇之前端特效
1、HTML+CSS
2、Java
3、jQuery
阶段四、人工智能篇之Python高级应用
1、Python开发
2、数据库应用程序开发
3、Python Web设计
4、存储模型设计
5、智联招聘爬虫
6、附加:基础python爬虫库
阶段五、人工智能篇之人工智能机器学习篇
1、数学基础
2、高等数学必知必会
3、Numpy前导介绍
4、Pandas前导课程
5、机器学习
阶段六、人工智能篇之人工智能项目实战
1、人脸性别和年龄识别原理
2、CTR广告点击量预测
3、DQN+遗传算法
4、图像检索系统
5、NLP阅读理解
阶段七、人工智能篇之人工智能项目实战篇
1、基于Python数据分析与机器学习案例实战教程
2、基于人工智能与深度学习的项目实战
3、分布式搜索引擎ElasticSearch开发
4、AI法律咨询大数据分析与服务智能推荐项目
5、电商大数据情感分析与AI推断实战项目
6、AI大数据互联网**智能推荐
人工智能和Python的渊源在于。就像我们统计数据或选择用excel制作表格时,因为在需要用到加减乘除或者、函数等时,只需要套用公司就可以。因为SUM、AVERAGE等这样的函数运行的背后,是C++/C#等语言已经编写好了代码,所以Excel只是工具和展现形式并不是它做计算。同理在学习人工智能时Python只是用来 *** 作深度学习框架的工具,实际负责运算的主要模块并不依靠Python,真正起作用的是也是一大堆复杂的C++ / CUDA程序。
深度学习人工智能时,自己计算太复杂,还要写C++代码 *** 作,这时程序员就想要不搞一套类似复杂的Excel配置表,直接搭建神经网络、填参数、导入数据,一点按钮就直接开始训练模型、得出结果。这个方法简单实用可是神经网络搭建起来太复杂,需要填写的参数太多,各种五花八门的选项也很难做成直观的图形工具。只能用一个类似Python的相对好用的语言,通过简化的程序代码来搭建神经网络、填写参数、导入数据,并调用执行函数进行训练。通过这种语言来描述模型、传递参数、转换好输入数据,然后扔到复杂的深度学习框架里面去计算。那么为什么会选择Python?
科学家们很早就喜欢用Python实验算法,也善于使用numpy做科学计算,用pyplot画数据图。恰好Google内部用Python也非常多,所以采用Python也是必然的。除Python外,实际上TensorFlow框架还支持JavaScript、c++、Java、GO、等语言。按说人工智能算法用这些也可以。但是官方说了,除Python之外的语言不一定承诺API稳定性。所以人工智能和Python就密不可分了。
单说人工智能的核心算法,那时是完全依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。所以某种意义上其实C/C++才是人工智能领域最重要的语言。Python是这些库的API binding,要开发一个其他语言到C/C++的跨语言接口,Python是最容易得,比其他语言的ffi门槛要低不少,CPython的C API是双向融合的,可以直接对外暴露封装过的Python对象,还可以允许用户通过继承这些自定义对象来引入新特性,甚至可以从C代码当中再调用Python的函数。
Python一直都是科学计算和数据分析的重要工具,Python是这些库的API binding,要开发一个其他语言到C/C++的跨语言接口,Python是最容易的,比其他语言的ffi门槛要低不少,CPython的C API是双向融合的,可以直接对外暴露封装过的Python对象,还可以允许用户通过继承这些自定义对象来引入新特性,甚至可以从C代码当中再调用Python的函数。都说时势造英雄,也可以说是人工智能和Python互相之间成就者对方,人工智能算法促进Python的发展,而Python也让算法更加简单。
·Web应用开发
Python常被用于Web开发,随着Python的Web开发框架逐渐成熟,如Django、flask等等,开发者们可以更轻松地开发和管理复杂的Web程序。通过mod_wsgi模块,Apache可以运行Python编写的Web程序,举个最直观的例子,全球最大的搜索引擎
Google,在其网络搜索系统中就广泛使用 Python 语言。另外,我们经常访问的集**、读书、音乐于一体的豆瓣网(如图 1 所示),也是使用 Python
实现的。不仅如此,全球最大的视频网站 Youtube 以及 Dropbox(一款网络文件同步工具)也都是用 Python 开发的。
·自动化运维
Python 是标准的系统组件,可以在终端下直接运行 Python。有一些 Linux 发行版的安装器使用 Python 语言编写,例如 Ubuntu 的
Ubiquity 安装器、Red Hat Linux 和 Fedora 的 Anaconda 安装器等等。另外,Python
标准库中包含了多个可用来调用 *** 作系统功能的库。例如,通过 pywin32 这个软件包,我们能访问 Windows 的 COM 服务以及其他 Windows
API;使用 IronPython,我们能够直接调用 Net Framework。
·人工智能领域
人工智能是现如今非常火的一个方向, Python
在人工智能领域内的机器学习、神经网络、深度学习等方面,都是主流的编程语言。可以这么说,基于大数据分析和深度学习发展而来的人工智能,其本质上已经无法离开
Python 的支持了。
·网络爬虫
Python语言很早就用来编写网络爬虫。Google 等搜索引擎公司大量地使用 Python 语言编写网络爬虫。从技术层面上将,Python
提供有很多服务于编写网络爬虫的工具,例如 urllib、Selenium 和 BeautifulSoup 等,还提供了一个网络爬虫框架 Scrapy。
·游戏开发
很多游戏都是使用C++编写图形显示等高性能的模块,使用Python或Lua编写游戏的逻辑,相比Python,Lua的功能更简单,体积也更小,但Python支持更多的特性和数据类型。除此之外,Python
可以直接调用 Open GL 实现 3D 绘制,这是高性能游戏引擎的技术基础。事实上,有很多 Python 语言实现的游戏引擎,例如 Pygame、Pyglet
以及 Cocos 2d 等。
以上就是关于pythonweb框架排行全部的内容,包括:pythonweb框架排行、Python要哪些要点要学习、Python做大数据,都需要学习什么,比如哪些框架,库等!人工智能呢请尽量详细点!等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)