对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key-
value应用场景,如日志信息的存储,对于内容信息不需要完全结构化出来的类CMS应用等。注意hbase针对的仍然是OLTP应用为主。
对于hive主要针对的是OLAP应用,注意其底层不是hbase,而是hdfs分布式文件系统,重点是基于一个统一的查询分析层,支撑OLAP应用中的各种关联,分组,聚合类SQL语句。hive一般只用于查询分析统计,而不能是常见的CUD *** 作,要知道HIVE是需要从已有的数据库或日志进行同步最终入到hdfs文件系统中,当前要做到增量实时同步都相当困难。
和mysql,oracle完全不是相同的应用场景。这个是结构化数据库,针对的更多的是结构化,事务一致性要求高,业务规则逻辑复杂,数据模型复杂的企业信息化类应用等。包括互联网应用中的很多业务系统也需要通过结构化数据库来实现。所以和hbase,hive不是一个层面的东西,不比较。
1
进入HIVE之前要把HADOOP给启动起来,因为HIVE是基于HADOOP的。所有的MR计算都是在HADOOP上面进行的。
2
在命令行中输入:hive。这个时候就可以顺利的进入HIVE了。当然了,如果你想直接执行HQL脚本文件可以这样:hive -f xxxxxhql。
3
进入hive之后一一般默认的数据库都是default。如果你切换数据库的话所建的表都会是在default数据库里面。
4
创建数据库的语法是:create database database_name;非常简单的,其实hive跟mysql的语法还是比较相似的。为什么呢?请继续往下
5
切换数据库的时候可以输入:use database_name;
查看所有数据库的时候可以输入:show databases;
查看所有表的时候可以输入:show tables
6
看表结构的时候可以输入:describe tab_name;
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录结构映射成表。主要关注的是对数据的统计等方面。适合的场景:hbase:适合大型数据存储,其作用可以类比于传统数据库的作用,主要关注的数据的存取。hive:适合大数据的管理,统计,处理,其作用类比于传统的数据仓库,主要关注的数据的处理。总结:应对大数据的时候,如果你偏重于数据存储查询hbase无疑是更加适合,而你关注的是对大数据的处理结果查询,比如你查询的时候有类似于count,sum等函数 *** 作 hive就能满足你的需求,一般有些项目都输在hive里面进行数据处理,然后将结果导入mysql等数据库或者hbase中进行查询,至于mysql与hbase的选择 比较倾向于你的处理之后的数据量
Hive与传统的关系型数据库有很多类似的地方,例如对SQL的支持。但是其基于HDFS与MapReduce的事实使得它与传统的数据库在很多方面有很大的不同,在一些特性的支持下也受到底层架构的限制,但是这些限制随着版本迭代正在不断被消除,使得Hive看起来越来越像传统的数据库。
以上就是关于hbase和hive的差别是什么,各自适用在什么场景中全部的内容,包括:hbase和hive的差别是什么,各自适用在什么场景中、怎样查看hive建的外部表的数据库、hive 和hbase 有什么区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)