经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的 *** 作,最终对数据库进行增加、修改、删除等 *** 作。上述系统可统一称为OLTP(Online Transaction Process,在线事务处理),指的就是系统运行了一段时间以后,必然帮助企事业单位收集大量的历史数据。但是,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。如何把数据库中存在的数据转变为业务人员需要的信息大部分的答案是报表系统。简单说,报表系统已经可以称作是BI了,它是BI的低端实现。
国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘。而我国的企业,大部分还停留在报表阶段。
数据报表不可取代
传统的报表系统技术上已经相当成熟,大家熟悉的Excel、水晶报表、Reporting Service等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。
1 数据太多,信息太少
密密麻麻的表格堆砌了大量数据,到底有多少业务人员仔细看每一个数据到底这些数据代表了什么信息、什么趋势级别越高的领导,越需要简明的信息。如果我是董事长,我可能只需要一句话:我们的情况是好、中还是差
2 难以交互分析、了解各种组合
定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。但是,这两张表无法回答诸如“华北地区中青年顾客购买数码相机类型产品的情况”等问题。业务问题经常需要多个角度的交互分析。
3 难以挖掘出潜在的规则
报表系统列出的往往是表面上的数据信息,但是海量数据深处潜在含有哪些规则呢什么客户对我们价值最大,产品之间相互关联的程度如何越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。
4 难以追溯历史,数据形成孤岛
业务系统很多,数据存在于不同地方。太旧的数据往往被业务系统备份出去,导致宏观分析、长期历史分析难度很大。
因此,随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不可取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。
八维以上的数据分析
如果说OLTP侧重于对数据库进行增加、修改、删除等日常事务 *** 作,OLAP(Online Analytics Process,在线分析系统)则侧重于针对宏观问题,全面分析数据,获得有价值的信息。
为了达到OLAP的目的,传统的关系型数据库已经不够了,需要一种新的技术叫做多维数据库。
多维数据库的概念并不复杂。举一个例子,我们想描述2003年4月份可乐在北部地区销售额10万元时,牵扯到几个角度:时间、产品、地区。这些叫做维度。至于销售额,叫做度量值。当然,还有成本、利润等。
除了时间、产品和地区,我们还可以有很多维度,例如客户的性别、职业、销售部门、促销方式等等。实际上,使用中的多维数据库可能是一个8维或者15维的立方体。
虽然结构上15维的立方体很复杂,但是概念上非常简单。
数据分析系统的总体架构分为四个部分:源系统、数据仓库、多维数据库、客户端。
·源系统:包括现有的所有OLTP系统,搭建BI系统并不需要更改现有系统。
·数据仓库:数据大集中,通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次,当然是自动的。数据仓库依然建立在关系型数据库上,往往符合叫做“星型结构”的模型。
·多维数据库:数据仓库的数据经过多维建模,形成了立方体结构。每一个立方体描述了一个业务主题,例如销售、库存或者财务。
·客户端:好的客户端软件可以把多维立方体中的信息丰富多彩地展现给用户。
数据分析案例:
在实际的案例中,我们利用Oracle9i搭建了数据仓库,Microsoft Analysis Service 2000搭建了多维数据库,ProClarity 60 作为客户端分析软件。
分解树好像一个组织图。分解树在回答以下问题时很最高的销售额
·在特定的产品种类内,各种产品间的销售额分布如何
·哪个销售人员完成了最高百分比的销售额
在图1中,可以对PC机在各个地域的销售额和所占百分比一目了然。任意一层分解树都可以根据不同维度随意展开。在该分解树中,在大区这一层是按国家展开,在国家这一层是按产品分类展开。
投影图(图3)使用散点图的格式,显示两个或三个度量值之间的关系。数据点的集中预示两个变量之间存在强的相关关系,而稀疏分布的数据点可能显示不明显的关系。
投影图很适合分析大量的数据。在显示因果关系方面有明显效果,比如例外的数据点就可以考虑进一步研究,因为它们落在“正常”的点群范围之外。
数据挖掘看穿你的需求
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。
定义为下列软件工具的集合终端用户查询和报告工具。专门用来支持初级用户的原始数据访问,不包括适应于专业人士的成品报告生成工具。
OLAP工具。提供多维数据管理环境,其典型的应用是对商业问题的建模与商业数据分析。OLAP也被称为多维分析。
数据挖掘(DataMining)软件。使用诸如神经网络、规则归纳等技术,用来发现数据之间的关系,做出基于数据的推断。
数据仓库(DataWarehouse)和数据集市(DataMart)产品。包括数据转换、管理和存取等方面的预配置软件,通常还包括一些业务模型,如财务分析模型。
联机分析处理(OLAP)的概念最早是由关系数据库之父EFCodd于1993年提出的,他同时提出了关于OLAP的12条准则。OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理(OLTP)明显区分开来。
当今的数据处理大致可以分成两大类:联机事务处理OLTP(On-LineTransactionProcessing)、联机分析处理OLAP(On-LineAnalyticalProcessing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析 *** 作,侧重决策支持,并且提供直观易懂的查询结果。
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是维这个概念。
“维”是人们观察客观世界的角度,是一种高层次的类型划分。“维”一般包含着层次关系,这种层次关系有时会相当复杂。通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。因此OLAP也可以说是多维数据分析工具的集合。
OLAP的基本多维分析 *** 作有钻取(rollup和drilldown)、切片(slice)和切块(dice)、以及旋转(pivot)、drillacross、drillthrough等。
钻取是改变维的层次,变换分析的粒度。它包括向上钻取(rollup)和向下钻取(drilldown)。rollup是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而drilldown则相反,它从汇总数据深入到细节数据进行观察或增加新维。
切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个,则是切块。
旋转是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。
OLAP有多种实现方法,根据存储数据的方式不同可以分为ROLAP、MOLAP、HOLAP。
ROLAP表示基于关系数据库的OLAP实现(RelationalOLAP)。以关系数据库为核心,以关系型结构进行多维数据的表示和存储。ROLAP将多维数据库的多维结构划分为两类表:一类是事实表,用来存储数据和维关键字;另一类是维表,即对每个维至少使用一个表来存放维的层次、成员类别等维的描述信息。维表和事实表通过主关键字和外关键字联系在一起,形成了“星型模式”。对于层次复杂的维,为避免冗余数据占用过大的存储空间,可以使用多个表来描述,这种星型模式的扩展称为“雪花模式”。
MOLAP表示基于多维数据组织的OLAP实现(OLAP)。以多维数据组织方式为核心,也就是说,MOLAP使用多维数组存储数据。多维数据在存储中将形成“立方块(Cube)”的结构,在MOLAP中对“立方块”的“旋转”、“切块”、“切片”是产生多维数据报表的主要技术。
HOLAP表示基于混合数据组织的OLAP实现(HybridOLAP)。如低层是关系型的,高层是多维矩阵型的。这种方式具有更好的灵活性。
还有其他的一些实现OLAP的方法,如提供一个专用的SQLServer,对某些存储模式(如星型、雪片型)提供对SQL查询的特殊支持。
OLAP工具是针对特定问题的联机数据访问与分析。它通过多维的方式对数据进行分析、查询和报表。维是人们观察数据的特定角度。例如,一个企业在考虑产品的销售情况时,通常从时间、地区和产品的不同角度来深入观察产品的销售情况。这里的时间、地区和产品就是维。而这些维的不同组合和所考察的度量指标构成的多维数组则是OLAP分析的基础,可形式化表示为(维1,维2,,维n,度量指标),如(地区、时间、产品、销售额)。多维分析是指对以多维形式组织起来的数据采取切片(Slice)、切块(Dice)、钻取(Drill-down和Roll-up)、旋转(Pivot)等各种分析动作,以求剖析数据,使用户能从多个角度、多侧面地观察数据库中的数据,从而深入理解包含在数据中的信息。
主流的商业智能工具包括Style(思达商业智能)、FineBI商业智能软件、BO、COGNOS、BRIO。一些国内的软件工具平台如KCOM也集成了一些基本的商业智能工具。
根据综合性数据的组织方式的不同,目常见的OLAP主要有基于多维数据库的MOLAP及基于关系数据库的ROLAP两种。MOLAP是以多维的方式组织和存储数据,ROLAP则利用现有的关系数据库技术来模拟多维数据。在数据仓库应用中,OLAP应用一般是数据仓库应用的前端工具,同时OLAP工具还可以同数据挖掘工具、统计分析工具配合使用,增强决策分析功能。
补充定义
商业智能(Business,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
分析五种数据库开发工具的相同点:能够连接到数据库并执行查询,通常使用图形化用户界面(GUI)来方便用户执行 *** 作,支持 SQL 语言。不同点:面向对象特性 ,VB:差;PB:较好;C++ Builder/Dephi:很好; VC:一般 ;JAVA:非常好
在SQL Server 2012 安装的过程中,Analysis Services 可以选择以下三种服务器模式之一:多维和数据挖掘(默认模式)、PowerPivot for SharePoint 和表格。针对于准备安装的实例,我们可以为Analysis Services选择安装哪种服务器模式,但针对于已经安装的实例,我们该如何确定所安装的服务器模型是哪种呢?
方法1:
确定服务器模式的最简单方法是在 SQL Server Management Studio 中连接到该服务器,并且在对象资源管理器中注意服务器名称旁的图标。下图显示在多维、表格和 PowerPivot 模式下部署的三个 Analysis Services 实例(按顺序对应):
方法2:
您可以在包含在每个 Analysis Services 实例中的 msmdsrvini 文件中查看 DeploymentMode 属性。 该属性的值标识服务器模式。 有效值为 0(多维)、1 (SharePoint) 或 2(表格)。您必须是 Analysis Services 管理员(即,服务器角色的成员)才可以打开 msmdsrvini 文件。此文件包含结构化的 XML。可以使用记事本或其他文本编辑器查看该文件。
备注:
如果您不想使用所安装的服务器模式,则必须卸载后再重新安装该软件,并且选择想要的模式。或者,您可以在同一台计算机上安装 Analysis Services 的其他实例,以便您具有运行不同模式的多个实例。
每个模式与其他模式都是互斥的。 配置为表格模式的服务器不能运行包含多维数据集和维度的 Analysis Services 数据库。如果基础计算机硬件能够支持,则您可以在同一台计算机上安装 Analysis Services 的多个实例并且对每个实例进行配置以便使用不同的部署模式。请记住,Analysis Services 是一种消耗大量资源的应用程序。仅推荐对于高端服务器,才在同一个系统上部署多个实例。
<
$host = "localhost"; //主机名
$user = "root"; //mysql用户名
$password = ""; //mysql密码
$database = "doc"; //mysql数据库名
$tables = "mclass"; //表名
$conn=mysql_connect("$host","$user","$password") or die("数据库打开出错");
mysql_select_db("$database");
$query="select from $tables";
$result=mysql_query($query,$conn);
$i=0;
$j=0;
while($row=mysql_fetch_row($result)){
$array[$i][$j] = $row[0]$row[1];
$array2[$i][$j] = $row[0];
$j++; // echo $i","$j$row[1]"<br>";
if($j==3) {
$i++;
$j=0;
} //else {$j++ ;}
}
$amax=count($array);//获是数组内数据个数。
$rows=2; //设置列数
//开始显示数据
for ($x=0; $x<=$amax-1; $x++) {
for ($y=0; $y<= $rows; $y++) {
echo "<a href="$array2[$x][$y]">"$array[$x][$y]"</a>|" ;
}
echo "<p>";
}
/
显示结果为
aaa|bbb|ccc
ddd|eee|fff
lll|mmm|nnn
/
>
以上就是关于BI的三个层次全部的内容,包括:BI的三个层次、商业智能的相关定义、分析五种数据库开发工具有哪些相同点和不同点等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)