1 为什么要拆分数据库?
单体项目在构建之初,数据库的负载和数据量都不大,所以不需要对数据库做拆分,小型财务系统、文书系统、ERP系统、OA系统,用一个MySQL数据库实例基本就够用了。
就像《淘宝技术这十年》里面说到的,电商业务的数据量增长飞快,所以最开始的PHP+MySQL的架构已经不能满足实际要求了,于是淘宝想到的第一个办法就是把MySQL替换成Oracle。但是没过了多久,在08年前后,单节点的Oracle数据库也不好用了,于是淘宝终于告别了单节点数据库,开始拆分数据库。从一个节点,变成多个节点。
拆分数据库是有讲究的,比如说拆分方法有两种:垂直切分和水平切分。那你是先水平切分还是垂直切分呢?顺序无所谓?不,顺序有所为,次序绝对不能错:先水平切分,然后垂直切分。
2 什么是垂直切分?
垂直切分是根据业务来拆分数据库,同一类业务的数据表拆分到一个独立的数据库,另一类的数据表拆分到其他数据库。
比如说一个新零售的电商数据库,我们可以把跟商品相关的数据表拆分成一个数据库,然后在这些数据表的基础之上,构建出商品系统。比如用JAVA或者PHP语言,创建出一个商城系统。然后把跟进销存相关的数据表拆分到另外一个数据库上,再用程序构建出仓库系统。
垂直切分解决了什么问题
垂直切分可以降低单节点数据库的负载。原来所有数据表都放在一个数据库节点上,无疑所有的读写请求也都发到这个MySQL上面,所以数据库的负载太高。如果把一个节点的数据库拆分成多个MySQL数据库,这样就可以有效的降低每个MySQL数据库的负载。
垂直切分不能解决什么问题
垂直切分不能解决的是缩表,比如说商品表无论划分给哪个数据库节点,商品表的记录还是那么多,不管你把数据库垂直拆分的有多细致,每个数据表里面的数据量是没有变化的。
MySQL单表记录超过2000万,读写性能会下降的很快,因此说垂直切分并不能起到缩表的效果。
3 什么是水平切分?
水平切分是按照某个字段的某种规则,把数据切分到多张数据表。一张数据表化整为零,拆分成多张数据表,这样就可以起到缩表的效果了。
很多人,都会水平切分存在误解,以为水平切分出来的数据表必须保存在不同的MySQL节点上。其实水平切分出来的数据表也可以保存在一个MySQL节点上面。不是水平切分一定需要多个MySQL节点。为什么这么说呢?
许多人不知道MySQL自带一种数据分区的技术,可以把一张表的数据,按照特殊规则,切分存储在不同的目录下。如果我们给Linux主机挂载了多块硬盘,我们完全可以利用MySQL分区技术,把一张表的数据切分存储在多个硬盘上。这样就由原来一块硬盘有限的IO能力,升级成了多个磁盘增强型的IO。如果你感兴趣数据分区的具体效果,可以看《MySQL数据库集群》这门实战课。
水平切分的用途
水平切分可以把数据切分到多张数据表,可以起到缩表的作用。
但是也不是所有的数据表都要做水平切分。数据量较大的数据表才需要做数据切分,比如说电商系统中的,用户表、商品表、产品表、地址表、订单表等等。有些数据表就不需要切分,因为数据量不多,比如说品牌表、供货商表、仓库表,这些都是不需要切分的。
水平切分的缺点
不同数据表的切分规则并不一致,要根据实际业务来确定。所以我们在选择数据库中间件产品的时候,就要选择切分规则丰富的产品。常见的数据库中间件有:MyCat、Atlas、ProxySQL等等。有些人觉得MyCat是Java语言开发的,就怀疑MyCat运行效率。其实数据库中间件的作用相当于SQL语句的路由器。你家路由器硬件配置不怎么高,但是不影响你享用百兆宽带。MyCat也是一个道理,它仅仅是起到SQL语句转发的作用,并不会实际执行SQL语句。我推荐使用MyCat最主要的原因是它自带了非常多的数据切分规则,我们可以按照主键求模切分数据,可以按照主键范围切分数据,还可以按照日期切分数据等等。因此说,为了满足业务的需要,MyCat目前来说算是非常不错的中间件产品。
水平切分的另一个缺点就是扩容比较麻烦,日积月累,分片迟早有不够用的时候。这时候不是首先选择增加新的集群分片。因为一个MySQL分片,需要4~8个MySQL节点(最小规模),增加一个分片的投入成本是很高的。所以正确的做法是做冷热数据分离,定期对分片中的数据归档。把过期的业务数据,从分片中转移到归档库。目前来说数据压缩比最高的MySQL引擎是TokuDB,而且带着事物的写入速度是InnoDB引擎的6-14倍。用TokuDB作为归档数据库最适合不过。
4 为什么先做水平切分,后作垂直切分?
随着数据量的增加,最先应该做的是数据分片,利用多块硬盘来增大数据IO能力和存储空间,这么做的成本是最低的。几块硬盘的钱就能收获不错的IO性能。
进入到下一个阶段,数据量继续增大,这时候我们应该把数据切分到多个MySQL节点上,用MyCat管理数据切分。当然还要做数据的读写分离等等,这里不展开讨论。在后台做水平切分的同时,业务系统也可以引入负载均衡、分布式架构等等。理论上,使用了冷热数据分离之后,水平切分这种方式可以继续维持很长一段时间,数据量再大也不怕,定期归档就好了。
数据库到了水平切分的阶段,数据量的增加已经不是更改架构设计的主要原因了。反而这个阶段业务系统承受不住了,如果再不对系统做模块拆分,业务系统也撑不下去了,所以按照模块和业务,把一个系统拆分成若干子系统。若干子系统之间,数据相对独立。比如淘宝不会跟支付支付宝分享全部数据,共享同一套数据表,这也影响各自业务的发展。所以就要弄垂直切分了,把数据表归类,拆分成若干个数据库系统。
讲到这里,你仔细想想。如果过早的对数据库做了垂直切分,势必要重新构建若干独立的业务系统,工作量太巨大。水平切分并不需要业务系统做大幅度的修改,因此说应该先从水平切分开始做。
“mysql”达到1亿级别如何设计优化?
1首先可以考虑业务层面优化,即垂直分表。
垂直分表就是把一个数据量很大的表,可以按某个字段的属性或使用频繁程度分类,拆分为多个表。
如有多种业务类型,每种业务类型入不同的表,table1,table2,table3
如果日常业务不需要使用所有数据,可以按时间分表,比如说月表。每个表只存一个月记录。
2架构上的优化,即水平分表。
水平分表就是根据一列或多列数据的值把数据行放到多个独立的表里,这里不具备业务意义。
如按照id分表,末尾是0-9的数据分别插入到10个表里面。
可能你要问,这样看起来和刚才说的垂直分表没什么区别。只不过是否具备业务意义的差异,都是按字段的值来分表。
实际上,水平分表现在最流行的实现方式,是通过水平分库来实现的。即刚才所说的10个表,分布在10个mysql数据库上。这样可以通过多个低配置主机整合起来,实现高性能。
最常见的解决方案是cobar,这个帖子介绍的比较完善,可以看看。
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷
1 优化一览图
2 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是 *** 作数据库即可,而硬优化则是 *** 作服务器硬件及参数设置
21 软优化
211 查询语句优化
1首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息
2例:
显示:
其中会显示索引和查询数据读取数据条数等信息
212 优化子查询
在MySQL中,尽量使用JOIN来代替子查询因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高
213 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:
214 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
215 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时
216 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询
217 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费
1 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁
22 硬优化
221 硬件三件套
1配置多核心和频率高的cpu,多核心可以执行多个线程
2配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度
3配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行 *** 作的能力
222 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能MySQL服务的配置参数都在mycnf或myini,下面列出性能影响较大的几个参数
223 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
224 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了
这种架构一般用在以下三类场景
1 备份多台 Server 的数据到一台如果按照数据切分方向来讲,那就是垂直切分。比如图 2,业务 A、B、C、D 是之前拆分好的业务,现在需要把这些拆分好的业务汇总起来备份,那这种需求也很适用于多源复制架构。实现方法我大概描述下:业务 A、B、C、D 分别位于 4 台 Server,每台 Server 分别有一个数据库来隔离前端的业务数据,那这样,在从库就能把四台业务的数据全部汇总起来,而不需要做额外的 *** 作。那没有多源复制之前,要实现这类需求,只能在汇总机器上搭建多个 MySQL 实例,那这样势必会涉及到跨库关联的问题,不但性能急剧下降,管理多个实例也没有单台来的容易。
2 用来聚合前端多个 Server 的分片数据。
同样,按照数据切分方向来讲,属于水平切分。比如图 3,按照年份拆分好的数据,要做一个汇总数据展现,那这种架构也非常合适。实现方法稍微复杂些:比如所有 Server 共享同一数据库和表,一般为了开发极端透明,前端配置有分库分表的中间件,比如爱可生的 DBLE。
3 汇总并合并多个 Server 的数据
第三类和第一种场景类似。不一样的是不仅仅是数据需要汇总到目标端,还得合并这些数据,这就比第一种来的相对复杂些。比如图 4,那这样的需求,是不是也适合多源复制呢?答案是 YES。那具体怎么做呢?
以上就是关于垂直切分和水平切分经常一起使用吗全部的内容,包括:垂直切分和水平切分经常一起使用吗、“mysql”达到1亿级别如何设计优化、超详细MySQL数据库优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)