数据库实验总结

数据库实验总结,第1张

数据库实验总结一

试验内容

1、 数据表的建立

基本表《简单的》带有主键

带有外码约束的(外码来自其他表或者本表)

2、 数据表的修改

添加删除列

修改列属性类型

添加删除约束(约束名)

元组的添加,修改,删除

删除数据表

试验过程

1、create table student

(

sno char(9) primary key , /sno是主码 列级完整性约束条件/

sname char(20) unique, /sname取唯一值/

ssex char(2),

sage smallint, /类型为smallint/

sdept char(20) /所在系/

);

create table course

(

cno char(4) primary key, /列级完整性约束条件,cno是主码/

cname char(40),

cpno char(4), /cpno的含义是先行课/

ccredit smallint,

foreign key (cpno) references course(cno)

/表级完整性约束条件,cpno是外码,被参照表是course,被参照列是cno/

);

create table sc

(

sno char(9),

cno char(4),

grade smallint,

primary key (sno,cno),

/主码有两个属性构成,必须作为表级完整性进行定义/

foreign key (sno) references student(sno),

/表级完整性约束条件,sno是外码,被参照表是student/

foreign key (cno) references course(cno),

/表级完整性约束条件,cno是外码,被参照表示course/

);

例1、create table s

(

cno varchar(3), /变长的字符串,输入2个字符就是两个字符不会补空格/

sname varchar(20),

status int,

city varchar(20),

constraint pk_sno primary key(sno), /约束条件的名字为pk_sno/

);

create table p

(

pno varchar(3),

pname varchar(20),

color varchar(3),

weight int,

constraint pk_pno primary key (pno), /约束条件的名字是pk_pno/

);

create table j

(

jno varchar(3),

jname varchar(20),

city varchar(20),

constraint pk_jno primary key(jno) /约束条件的名字为pk_jno/

);

例2、create table spj

(

sno varchar(3), /第一个表中的主码/

pno varchar(3),

jno varchar(3),

qty int, /数量/

constraint pk_spj primary key(sno,pno,jno), /主码由3个属性组成/

foreign key(sno) references s(sno),

/表级完整性约束条件,sno是外码,被参照表是s/

foreign key(pno) references p(pno),

/表级完整性约束条件,pno是外码,被参照表是p/

foreign key(jno) references j(jno),

/表级完整性约束条件,jno是外码,被参照表是j/

);

2、数据表的更改

在s表中添加一个concat 列

alter table s add concat varchar(20)

在s表中删除concat 列

alter table s drop column concat

更改s表 concat列的属性 把长度由20改为30

alter table s alter column concat varchar(30)

**** 名字为concat 修改属性为唯一的 属性名为con_concat

alter table s add constraint con_concat unique(concat)

删除约束关系con_concat

alter table s drop constraint con_concat

/插入一个元组/

insert into s valus(‘s1’,’精益’,20,’天津’) /20不能写成’20’/

试验中的问题的排除与总结:

1、在创建spj时

有三个实体所以从3个实体中取主码,还有一个数量属性也要写上

主码由那3个主码确定

2、更改一个数据库中数据表时一定要先使该数据库处于正在使用状态

3、constraint

是可选关键字,表示 primary key、not null、unique、foreign key 或 check 约束定义的开始。约束是特殊属性,用于强制数据完整性并可以为表及其列创建索引

4、--go可以不加但是要注意顺序 注:go --注释 提示错误

5、注意添加一个空元素用 null

附 sql备份

--创建一个数据库 student

create database student

go

--在数据库student中创建表student course sc 注意顺序

use student

----------------------------------------------------------------

create table student

(

sno char(9) primary key, /sno是主码 列级完整性约束条件/

sname char(10) unique, /sname取唯一值/

ssex char(2),

sage smallint, /类型为smallint/

sdept char(20) /所在系/

); /;要加/

-----------

数据库实验总结二

我在sql server 索引基础知识系列中,第一篇就讲了记录数据的基本格式。那里主要讲解的是,数据库的最小读存单元:数据页。一个数据页是8k大小。

对于数据库来说,它不会每次有一个数据页变化后,就存到硬盘。而是变化达到一定数量级后才会作这个 *** 作。 这时候,数据库并不是以数据页来作为 *** 作单元,而是以64k的数据(8个数据页,一个区)作为 *** 作单元。

区是管理空间的基本单位。一个区是八个物理上连续的页(即 64 kb)。这意味着 sql server 数据库中每 mb 有 16 个区。

为了使空间分配更有效,sql server 不会将所有区分配给包含少量数据的表。sql server 有两种类型的区:

统一区,由单个对象所有。区中的所有 8 页只能由所属对象使用。

混合区,最多可由八个对象共享。区中八页的每页可由不同的对象所有。

通常从混合区向新表或索引分配页。当表或索引增长到 8 页时,将变成使用统一区进行后续分配。如果对现有表创建索引,并且该表包含的行足以在索引中生成 8 页,则对该索引的所有分配都使用统一区进行。

为何会这样呢

其实很简单:

读或写 8kb 的时间与读或写 64 kb的时间几乎相同。

在 8 kb 到 64 kb 范围之内,单个磁盘 i/o 传输 *** 作所花的时间主要是磁盘取数臂和读/写磁头运动的时间。

因此,从数学上来讲,当需要传输 64 kb 以上的 sql 数据时,

尽可能地执行 64 kb 磁盘传输是有益的,即分成数个64k的 *** 作。

因为 64 kb 传输基本上与 8 kb 传输一样快,而每次传输的 sql server 数据是 8 kb 传输的 8 倍。

我们通过一个实例来看 有and *** 作符时候的最常见的一种情况。我们有下面一个表,

create table [dbo][member]( [member_no] [dbo][numeric_id] identity(1,1) not null, [lastname] [dbo][shortstring] not null, [firstname] [dbo][shortstring] not null, [middleinitial] [dbo][letter] null, [street] [dbo][shortstring] not null, [city] [dbo][shortstring] not null, [state_prov] [dbo][statecode] not null, [country] [dbo][countrycode] not null, [mail_code] [dbo][mailcode] not null, [phone_no] [dbo][phonenumber] null, [photograph] [image] null, [issue_dt] [datetime] not null default (getdate()), [expr_dt] [datetime] not null default (dateadd(year,1,getdate())), [region_no] [dbo][numeric_id] not null, [corp_no] [dbo][numeric_id] null, [prev_balance] [money] null default (0), [curr_balance] [money] null default (0), [member_code] [dbo][status_code] not null default (' '))

这个表具备下面的四个索引:

索引名 细节 索引的列

member_corporation_link nonclustered located on primary corp_no

member_ident clustered, unique, primary key located on primary member_no

member_region_link nonclustered located on primary region_no

memberfirstname nonclustered located on primary firstname

当我们执行下面的sql查询时候,

select mmember_no, mfirstname, mregion_nofrom dbomember as mwhere mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

sql server 会根据索引方式,优化成下面方式来执行。

select amember_no,afirstname,bregion_nofrom(select mmember_no, mfirstname from dbomember as m where mfirstname like 'k%' and mmember_no < 5000) a , -- 这个查询可以直接使用 memberfirstname 非聚集索引,而且这个非聚集索引覆盖了所有查询列-- 实际执行时,只需要 逻辑读取 3 次

(select mmember_no, mregion_no from dbomember as mwhere mregion_no > 6) b

-- 这个查询可以直接使用 member_region_link 非聚集索引,而且这个非聚集索引覆盖了所有查询列-- 实际执行时,只需要 逻辑读取 10 次

where amember_no = bmember_no

不信,你可以看这两个sql 的执行计划,以及逻辑读信息,都是一样的。

其实上面的sql,如果优化成下面的方式,实际的逻辑读消耗也是一样的。为何sql server 不会优化成下面的方式。是因为 and *** 作符优化的另外一个原则。

1/26 的数据和 1/6 的数据找交集的速度要比 1/52 的数据和 1/3 的数据找交集速度要慢。

select amember_no,afirstname,bregion_nofrom(select mmember_no, mfirstname from dbomember as mwhere mfirstname like 'k%' -- 1/26 数据) a,

(select mmember_no, mregion_no from dbomember as mwhere mregion_no > 6 and mmember_no < 5000-- 1/3 1/ 2 数据) bwhere amember_no = bmember_no

当然,我们要学习sql 如何优化的话,就会用到查询语句中的一个功能,指定查询使用哪个索引来进行。

比如下面的查询语句

select mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (0))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

select mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (1))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000goselect mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (membercovering3))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000goselect mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (memberfirstname, member_region_link))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

这里 index 计算符可以是 0 ,1, 指定的一个或者多个索引名字。对于 0 ,1 的意义如下:

如果存在聚集索引,则 index(0) 强制执行聚集索引扫描,index(1) 强制执行聚集索引扫描或查找(使用性能最高的一种)。

如果不存在聚集索引,则 index(0) 强制执行表扫描,index(1) 被解释为错误。

总结知识点:

简单来说,我们可以这么理解:sql server 对于每一条查询语句。会根据实际索引情况(sysindexes 系统表中存储这些信息),分析每种组合可能的成本。然后选择它认为成本最小的一种。作为它实际执行的计划。

成本代价计算的一个主要组成部分是逻辑i/o的数量,特别是对于单表的查询。

and *** 作要满足所有条件,这样,经常会要求对几个数据集作交集。数据集越小,数据集的交集计算越节省成本。

的项目中,竟然出现了滥用聚集索引的问题。看来没有培训最最基础的索引的意义,代价,使用场景,是一个非常大的失误。这篇博客就是从这个角度来罗列索引的基础知识。

使用索引的意义

索引在数据库中的作用类似于目录在书籍中的作用,用来提高查找信息的速度。

使用索引查找数据,无需对整表进行扫描,可以快速找到所需数据。

使用索引的代价

索引需要占用数据表以外的物理存储空间。

创建索引和维护索引要花费一定的时间。

当对表进行更新 *** 作时,索引需要被重建,这样降低了数据的维护速度。

创建索引的列

主键

外键或在表联接 *** 作中经常用到的列

在经常查询的字段上最好建立索引

不创建索引的列

很少在查询中被引用

包含较少的惟一值

定义为 text、ntext 或者 image 数据类型的列

heaps是staging data的很好选择,当它没有任何index时

excellent for high performance data loading (parallel bulk load and parallel index creation after load)

excellent as a partition to a partitioned view or a partitioned table

聚集索引提高性能的方法,在前面几篇博客中分别提到过,下面只是一个简单的大纲,细节请参看前面几篇博客。

何时创建聚集索引

clustered index会提高大多数table的性能,尤其是当它满足以下条件时:

独特, 狭窄, 静止: 最重要的条件

持续增长的,最好是只向上增加。例如:

identity

date, identity

guid (only when using newsequentialid() function)

聚集索引唯一性(独特型的问题)

由于聚集索引的b+树结构的叶子节点必须指向具体数据。如果你要建立聚集索引的列不唯一,并且你指定的创建的聚集索引是非唯一的聚集索引,则会有以下情况:

如果未使用 unique 属性创建聚集索引,数据库引擎 将向表自动添加一个四字节 uniqueifier 列。必要时,数据库引擎 将向行自动添加一个 uniqueifier 值,使每个键唯一。此列和列值供内部使用,用户不能查看或访问。

不同的变易语言有不同的截取字符串的函数,错误类型也不相同,以下提供的是数据库字符串截取问题

在varchar(1000)上报错字符串截断,于是改为varchar(8000)仍然报错。

通过对该条语句插入的记录进行多次修改并测试,发现“记录超长”错误不是某个字段长度超过了定义的字段类型长度,而是该条记录的所有字段的值加在一起超过了一定长度。

这个“长度”是由数据库的页大小决定的,即达梦数据库中一行记录的所有字段的实际长度的和不能超过页大小的一半

在达梦数据库中,一行记录所有字段长度累加不能大于下表:

解决方法

目前测试过的解决方法如下:

重新创建数据库,将数据库的页大小设为“16K”或以上;

达梦数据页大小在创建数据库时设置,设定之后不能更改。

将字段类型改为TEXT、CLOB、BLOB等大字段。

在数据库文件中,TEXT、CLOB、BLOB等大字段采用和普通字段不同的、特殊的存储方式,不占用该条记录的页大小。

下面有两个SQL语句可以达到在SQL Server 2005/2008压缩指定数据库文件和日志的大小的效果:

1、DBCC SHRINKDATABASE (Transact-SQL)

收缩指定数据库中的数据文件和日志文件的大小。

语法

DBCC SHRINKDATABASE

( 'database_name' | database_id | 0

[ ,target_percent ]

[ , { NOTRUNCATE | TRUNCATEONLY } ]

)

[ WITH NO_INFOMSGS ]

参数

'database_name' | database_id | 0 要收缩的数据库的名称或 ID。如果指定 0,则使用当前数据库。

target_percent 数据库收缩后的数据库文件中所需的剩余可用空间百分比。

NOTRUNCATE 通过将已分配的页从文件末尾移动到文件前面的未分配页来压缩数据文件中的数据。target_percent 是可选参数。 文件末尾的可用空间不会返回给 *** 作系统,文件的物理大小也不会更改。因此,指定 NOTRUNCATE 时,数据库看起来未收缩。 NOTRUNCATE 只适用于数据文件。日志文件不受影响。

TRUNCATEONLY 将文件末尾的所有可用空间释放给 *** 作系统,但不在文件内部执行任何页移动。数据文件只收缩到最近分配的区。如果与 TRUNCATEONLY 一起指定,将忽略 target_percent。 TRUNCATEONLY 只适用于数据文件。日志文件不受影响。

WITH NO_INFOMSGS 取消严重级别从 0 到 10 的所有信息性消息。

修改数据文件的扩展性;

alter database datafile '文件路径' autoextend on next 100m maxsize 2000M;

给表空间增加新的数据文件;

alter tablespace 表空间名 add datafile '数据文件路径' size 1000m autoextend on next 100m maxsize 2000M;

在对象资源管理器中,连接到 SQL Server 数据库引擎实例,然后展开该实例。

展开“数据库”,右键单击要扩展的数据库,再单击“属性”。

在“数据库属性”中,选择“文件”页。

若要增加现有文件的大小,请增加文件的“初始大小 (MB)”列中的值。数据库的大小须至少增加 1 MB。

若要通过添加新文件增加数据库的大小,请单击“添加”,然后输入新文件的值。有关详细信息,请参阅如何向数据库中添加数据或日志文件 (SQL Server Management Studio)。

单击“确定”。

分类: 电脑/网络 >> 程序设计 >> 其他编程语言

问题描述:

这样一张表:

字段19个,其中 Clob 6个,varchar(2000) 10个。

数据库页面大小是默认的16K,资料上说这种情况

下,一行数据的所有字段的长度累加不能大于8000,

那该怎么建?

达梦对表中使用 Clob 类型有没有其它要求?

解析:

建表没有问题,因为VARCHAR类型不管多大都不会分配实际空间的,而如果使用CHAR的话则会分配实际的空间

在插入的数据时候,如果一行中VARCHAR那几个字段总长度加起来超过8000的话会报错

clob字段的数据是另外存储的,使用没有什么特别的要求,用法是clob(长度),最大长度为2G-1字节,定义长度指明了在clob字段中可以接受的最大字节长度如不定义长度,缺省为2G-1

假定在程序效率和关键过程相当且不计入缓存等措施的条件下,读写任何类型的数据都没有直接 *** 作文件来的快,不论MSYQL过程如何,最后都要到磁盘上去读这个“文件”(记录存储区等效),所以当然这一切的前提是只读 内容,无关任何排序或查找 *** 作。

动态网站一般都是用数据库来存储信息,如果信息的及时性要求不高 可以加入缓存来减少频繁读写数据库。

两种方式一般都支持,但是绕过 *** 作系统直接 *** 作磁盘的性能较高,而且安全性也较高,数据库系中的磁盘性能一直都是瓶颈,大型数据库一般基于unix

系统,当然win下也有,不常用应为win的不可靠性,unix下,用的是裸设备raw设备,就是没有加工过的设备(unix下的磁盘分区属于特殊设备,

以文件形式统一管理),由dbms直接管理,不通过 *** 作系统,效率很高,可靠性也高,因为磁盘,cache和内存都是自己管理的,大型数据库系统

db2,oracal,informix(不太流行了),mssql算不上大型数据库系统。

1、直接读文件相比数据库查询效率更胜一筹,而且文中还没算上连接和断开的时间。

2、一次读取的内容越大,直接读文件的优势会越明

显(读文件时间都是小幅增长,这跟文件存储的连续性和簇大小等有关系),这个结果恰恰跟书生预料的相反,说明MYSQL对更大文件读取可能又附加了某些 ***

作(两次时间增长了近30%),如果只是单纯的赋值转换应该是差异偏小才对。

3、写文件和INSERT几乎不用测试就可以推测出,数据库效率只会更差。

4、很小的配置文件如果不需要使用到数据库特性,更加适合放到独立文件里存取,无需单独创建数据表或记录,很大的文件比如、音乐等采用文件存储更为方便,只把路径或缩略图等索引信息放到数据库里更合理一些。

5、PHP上如果只是读文件,file_get_contents比fopen、fclose更有效率,不包括判断存在这个函数时间会少3秒左右。

6、fetch_row和fetch_object应该是从fetch_array转换而来的,书生没看过PHP的源码,单从执行上就可以说明fetch_array效率更高,这跟网上的说法似乎相反。

磁盘读写与数据库的关系:

一 磁盘物理结构

(1) 盘片:硬盘的盘体由多个盘片叠在一起构成。

在硬盘出厂时,由硬盘生产商完成了低级格式化(物理格式化),作用是将空白的盘片(Platter)划分为一个个同圆心、不同半径的磁道

(Track),还将磁道划分为若干个扇区(Sector),每个扇区可存储128×2的N次方(N=0123)字节信息,默认每个扇区的大小为

512字节。通常使用者无需再进行低级格式化 *** 作。

(2) 磁头:每张盘片的正反两面各有一个磁头。

(3) 主轴:所有磁片都由主轴电机带动旋转。

(4) 控制集成电路板:复杂!上面还有ROM(内有软件系统)、Cache等。

二 磁盘如何完成单次IO *** 作

(1) 寻道

当控制器对磁盘发出一个IO *** 作命令的时候,磁盘的驱动臂(Actuator

Arm)带动磁头(Head)离开着陆区(Landing

Zone,位于内圈没有数据的区域),移动到要 *** 作的初始数据块所在的磁道(Track)的正上方,这个过程被称为寻道(Seeking),对应消耗的时

间被称为寻道时间(Seek Time);

(2) 旋转延迟

找到对应磁道还不能马上读取数据,这时候磁头要等到磁盘盘片(Platter)旋转到初始数据块所在的扇区(Sector)落在读写磁头正下方之后才能开始读取数据,在这个等待盘片旋转到可 *** 作扇区的过程中消耗的时间称为旋转延时(Rotational Delay);

(3) 数据传送

接下来就随着盘片的旋转,磁头不断的读/写相应的数据块,直到完成这次IO所需要 *** 作的全部数据,这个过程称为数据传送(Data Transfer),对应的时间称为传送时间(Transfer Time)。完成这三个步骤之后单次IO *** 作也就完成了。

根据磁盘单次IO *** 作的过程,可以发现:

单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间

进而推算IOPS(IO per second)的公式为:

IOPS = 1000ms/单次IO时间

三 磁盘IOPS计算

不同磁盘,它的寻道时间,旋转延迟,数据传送所需的时间各是多少?

1 寻道时间

考虑到被读写的数据可能在磁盘的任意一个磁道,既有可能在磁盘的最内圈(寻道时间最短),也可能在磁盘的最外圈(寻道时间最长),所以在计算中我们只考虑平均寻道时间。

在购买磁盘时,该参数都有标明,目前的SATA/SAS磁盘,按转速不同,寻道时间不同,不过通常都在10ms以下:

3 传送时间2 旋转延时

和寻道一样,当磁头定位到磁道之后有可能正好在要读写扇区之上,这时候是不需要额外的延时就可以立刻读写到数据,但是最坏的情况确实要磁盘旋转整整

一圈之后磁头才能读取到数据,所以这里也考虑的是平均旋转延时,对于15000rpm的磁盘就是(60s/15000)(1/2) = 2ms。

(1) 磁盘传输速率

磁盘传输速率分两种:内部传输速率(Internal Transfer Rate),外部传输速率(External Transfer Rate)。

内部传输速率(Internal Transfer Rate),是指磁头与硬盘缓存之间的数据传输速率,简单的说就是硬盘磁头将数据从盘片上读取出来,然后存储在缓存内的速度。

理想的内部传输速率不存在寻道,旋转延时,就一直在同一个磁道上读数据并传到缓存,显然这是不可能的,因为单个磁道的存储空间是有限的;

实际的内部传输速率包含了寻道和旋转延时,目前家用磁盘,稳定的内部传输速率一般在30MB/s到45MB/s之间(服务器磁盘,应该会更高)。

外部传输速率(External Transfer Rate),是指硬盘缓存和系统总线之间的数据传输速率,也就是计算机通过硬盘接口从缓存中将数据读出交给相应的硬盘控制器的速率。

硬盘厂商在硬盘参数中,通常也会给出一个最大传输速率,比如现在SATA30的6Gbit/s,换算一下就是61024/8,768MB/s,通常指的是硬盘接口对外的最大传输速率,当然实际使用中是达不到这个值的。

这里计算IOPS,保守选择实际内部传输速率,以40M/s为例。

(2) 单次IO *** 作的大小

有了传送速率,还要知道单次IO *** 作的大小(IO Chunk Size),才可以算出单次IO的传送时间。那么磁盘单次IO的大小是多少?答案是:不确定。

*** 作系统为了提高 IO的性能而引入了文件系统缓存(File System Cache),系统会根据请求数据的情况将多个来自IO的请求先放在缓存里面,然后再一次性的提交给磁盘,也就是说对于数据库发出的多个8K数据块的读 *** 作有可能放在一个磁盘读IO里就处理了。

还有,有些存储系统也是提供了缓存(Cache),接收到 *** 作系统的IO请求之后也是会将多个 *** 作系统的 IO请求合并成一个来处理。

不管是 *** 作系统层面的缓存还是磁盘控制器层面的缓存,目的都只有一个,提高数据读写的效率。因此每次单独的IO *** 作大小都是不一样的,它主要取决于系统对于数据读写效率的判断。这里以SQL Server数据库的数据页大小为例:8K。

(3) 传送时间

传送时间 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 02ms

可以发现:

(31) 如果IO Chunk Size大的话,传送时间会变大,从而导致IOPS变小;

(32) 机械磁盘的主要读写成本,都花在了寻址时间上,即:寻道时间 + 旋转延迟,也就是磁盘臂的摆动,和磁盘的旋转延迟。

(33) 如果粗略的计算IOPS,可以忽略传送时间,1000ms/(寻道时间 + 旋转延迟)即可。

4 IOPS计算示例

以15000rpm为例:

(1) 单次IO时间

单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间 = 3ms + 2ms + 02 ms = 52 ms

(2) IOPS

IOPS = 1000ms/单次IO时间 = 1000ms/52ms = 192 (次)

这里计算的是单块磁盘的随机访问IOPS。

考虑一种极端的情况,如果磁盘全部为顺序访问,那么就可以忽略:寻道时间 + 旋转延迟 的时长,IOPS的计算公式就变为:IOPS = 1000ms/传送时间

IOPS = 1000ms/传送时间= 1000ms/02ms = 5000 (次)

显然这种极端的情况太过理想,毕竟每个磁道的空间是有限的,寻道时间 + 旋转延迟 时长确实可以减少,不过是无法完全避免的。

四 数据库中的磁盘读写

1 随机访问和连续访问

(1) 随机访问(Random Access)

指的是本次IO所给出的扇区地址和上次IO给出扇区地址相差比较大,这样的话磁头在两次IO *** 作之间需要作比较大的移动动作才能重新开始读/写数据。

(2) 连续访问(Sequential Access)

相反的,如果当次IO给出的扇区地址与上次IO结束的扇区地址一致或者是接近的话,那磁头就能很快的开始这次IO *** 作,这样的多个IO *** 作称为连续访问。

(3) 以SQL Server数据库为例

数据文件,SQL Server统一区上的对象,是以extent(88k)为单位进行空间分配的,数据存放是很随机的,哪个数据页有空间,就写在哪里,除非通过文件组给每个表预分配足够大的、单独使用的文件,否则不能保证数据的连续性,通常为随机访问。

另外哪怕聚集索引表,也只是逻辑上的连续,并不是物理上。

日志文件,由于有VLF的存在,日志的读写理论上为连续访问,但如果日志文件设置为自动增长,且增量不大,VLF就会很多很小,那么就也并不是严格的连续访问了。

2 顺序IO和并发IO

(1) 顺序IO模式(Queue Mode)

磁盘控制器可能会一次对磁盘组发出一连串的IO命令,如果磁盘组一次只能执行一个IO命令,称为顺序IO;

(2) 并发IO模式(Burst Mode)

当磁盘组能同时执行多个IO命令时,称为并发IO。并发IO只能发生在由多个磁盘组成的磁盘组上,单块磁盘只能一次处理一个IO命令。

(3) 以SQL Server数据库为例

有的时候,尽管磁盘的IOPS(Disk Transfers/sec)还没有太大,但是发现数据库出现IO等待,为什么?通常是因为有了磁盘请求队列,有过多的IO请求堆积。

磁盘的请求队列和繁忙程度,通过以下性能计数器查看:

LogicalDisk/AvgDisk Queue Length

LogicalDisk/Current Disk Queue Length

LogicalDisk/%Disk Time

这种情况下,可以做的是:

(1) 简化业务逻辑,减少IO请求数;

(2) 同一个实例下,多个数据库迁移的不同实例下;

(3) 同一个数据库的日志,数据文件分离到不同的存储单元;

(4) 借助HA策略,做读写 *** 作的分离。

3 IOPS和吞吐量(throughput)

(1) IOPS

IOPS即每秒进行读写(I/O) *** 作的次数。在计算传送时间时,有提到,如果IO Chunk Size大的话,那么IOPS会变小,假设以100M为单位读写数据,那么IOPS就会很小。

(2) 吞吐量(throughput)

吞吐量指每秒可以读写的字节数。同样假设以100M为单位读写数据,尽管IOPS很小,但是每秒读写了N100M的数据,吞吐量并不小。

(3) 以SQL Server数据库为例

对于OLTP的系统,经常读写小块数据,多为随机访问,用IOPS来衡量读写性能;

对于数据仓库,日志文件,经常读写大块数据,多为顺序访问,用吞吐量来衡量读写性能。

磁盘当前的IOPS,通过以下性能计数器查看:

LogicalDisk/Disk Transfers/sec

LogicalDisk/Disk Reads/sec

LogicalDisk/Disk Writes/sec

磁盘当前的吞吐量,通过以下性能计数器查看:

LogicalDisk/Disk Bytes/sec

LogicalDisk/Disk Read Bytes/sec

LogicalDisk/Disk Write Bytes/sec

以上就是关于数据库实验总结全部的内容,包括:数据库实验总结、截取字符串函数显示类型错误、如何查询sql2008 数据库大小等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9350303.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存