大数据本质是一种概念,既数据体量大、数据格式复杂、数据来源广。而数据库则是一种具体的计算机技术,用来存储数据,常见的数据库有Mysql数据库、Oracle数据库等,底层还是基于磁盘来进行存储。
从大数据在引申出来的技术,比如数据量大的情况,怎么存储数据,以及怎么对这些数据进行加工处理。像现在HBase大数据组件,主要是针对大数据存储的,HadoopMapReduce计算框架、Spark计算框架等,则是针对大数据计算的。
大数据与数据库之间的关系,从大数据涉及到的技术中,包括数据库技术。因为在大数据情况下,也需要存储这些数据,此时就需要使用到数据库。当然,大数据技术存储数据不仅仅能够使用到数据库,还可以使用分布式文件系统,比如HDFS分布式文件系统,亚马逊的S3等。
同时,在大数据所涉及到的技术中,也包括了大数据计算、数据的展示等等。所以从技术领域来区分,大数据的技术会更广,而数据库技术则是更加的具体,就是用来存储数据。
目前在国内互联网公司而言,大数据方面数据库使用最多的还是HBase列式数据库。比如阿里巴巴,其内部有很多使用HBase列式数据库的场景。HBase数据库支持水平扩展,同时由于其采用LSM架构,天然的对数据写入支持非常好,因为是对磁盘进行追加写的模式,这比对内存随机写要更加的快速。
不仅仅是阿里,像在小米其实也有很多使用HBase列式数据库的场景,当然,其他小公司也在使用。所以在未来,我认为HBase列式数据库的发展前景非常好,毕竟也有互联网大厂在使用,开源社区方面也有它们在推动发展。如果你想学习一门大数据方面的数据库技术的话,我推荐你可以学习HBase。
我是Lake,专注大数据技术原理、人工智能、数据库技术、程序员经验分享,如果我的问答对你有帮助的话,希望你能点赞
1数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。
2数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。
3数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。
4数据量较小,比如十万以下,sqlite、access都可以。
上面是基于单表 *** 作的数据量,你看着选。
简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:
小巧灵活sqlite这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口, java、 python、c#等都可轻松 *** 作,如果你存储数据量不多,只是本地简单的 *** 作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:
专业强大mysql
这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:
免费开源postgresql
这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:
当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
最符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。
如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。
最近杀出来的airtable,更是简单高效,界面美观, *** 作与电子表格相当,发展势头也非常迅猛。
二者侧重点有所不同,用户可根据需要选择
作为一个软件开发人员,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:
1MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。
2MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。
3MySQL高度兼容标准SQL,这对于以后迁移到其他数据库而言,也能很大程度地降低学习成本。
希望我的回答能够对你有所帮助!!![耶][耶][耶]
Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。
遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!
现在, 我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?
MySQL数据库,90%的企业都会选择它数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。
如果你只是上班打卡,用SQL server就可以了;
如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;
不过90%的企业或个人,首选数据库都是MySQL数据库。
为什么这么说?因为,它集 低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码 等特性于一身,所以在金融、财务、网站、 数据处理 等应用领域,它占据着独一无二的优势。
这也是几乎所有企业都选择它,来存储数据的原因。
加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库 *** 作的工具。
因而,MySQL尤其受个人,以及中小企业的推崇。
虽然MySQL数据库简单易用,但我还是不会部署该怎么办?别担心,现在市面上已经出现了,一种自带数据库的新型办公软件。
比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。 (文末有免费获取方式)
云表内嵌的MySQL数据库,有何优点?1 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。
2 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是 “拿来即用” 就好)
3 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。
4 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。
内嵌的MySQL数据库是否可靠云表不仅是一款办公软件,同时还是一款开发工具。
通过它,你将解决以下问题:
复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用
你还可以通过它,与电子称、地磅等进行对接,与用友金蝶等三方系统集成,生成条形码,扫码出入库,生成移动端APP 基本上业务所需的功能,你都可以放心交给它做。
它最大的亮点就是,你可以 用使用excel的手法,用它来开发业务应用。
而且,可视化的 拖拉拽 之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。
没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。
不过,大家最关心的应该是数据安全问题吧。
数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!
正因如此,像 恒逸石化、许继电气、航天科工委、中铁、中冶、云南小松 等大型集团,才鼓励内部员工去学习云表。
篇幅所限,只说到这里,说太多你也不会看。
免费 的软获取方式在下方:
数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!
题主强调了简单易用。所以推荐最简单三个。
1Access。
2Excel。
3飞书文档、腾讯文档、石墨文档等的表格。
如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2003或者2007,Access这些年微软一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。
还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多
这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面 *** 作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。
个人使用数据库的话,只存数据不做分析,SQLite就足够了。
大型数据库是IBM公司开发
他有两种数据库类型;一种是关系数据库,典型代表产品:DB2;另一种则是层次数据库,代表产品:IMS层次数据库。
大型数据库的数据定义包括数据库模式定义和外模式定义。大型数据库的数据库模式是物理数据库记录型的集合。每个物理数据库记录型对应于层次数据模型中的一个层次模式,由一个DBD定义。物理数据库记录型到存储数据库的映射包含在这个物理数据库记录型的DBD定义中。
大型数据库的外模式是逻辑数据库记录型的集合。每个逻辑数据库记录型由一个PCB定义。一个逻辑数据库记录型到大型数据库模式的映射包含在这个逻辑数据库记录型的PCB定义中。用户是按照外模式 *** 纵数据的。
最商业的是ORACLE,做的最专业,然后是微软的SQL server,做的也很好,当然还有DB2等做得也不错,这些都是大型的数据库,,,如果掌握的全面的话,可以保证数据的安全 然后就是些小的数据库access,mysql等,适合于中小企业的数据库100万数据一下的数据。
总体来说,主流数据库并不存在明确的好坏之分,每一种数据库都有各自的优缺点,最主要还是看它是否能够满足您的需求。
总的来说,选择数据库可以从以下角度考虑:
从个人角度出发的话,如果是以学习和小型业务需求为主,推荐使用MySQL,它的优势在于:
成本(免费)
自由(完全开源,适用多个场景)
性能(体积小但速度快)
这三点决定了MySQL数据库的超高性价比。并且目前有不少主流公司仍然青睐MySQL,大名鼎鼎的Fackbook就依然在延续MySQL的使用。
2 如果是企业角度出发,主流的大型数据库如Oracle、Sql Server以及近些年来大数据领域十分火热的非关系型数据库,例如Redis、HBse等等,都可以作为考虑的对象。
接下来具体列举一些常用数据库的优缺点,希望能为大家提供参考:
MySQL:
优势:
MySQL是开放源代码的数据库,任何人都可以获得该数据库的源代码。
MySQL能够实现跨平台 *** 作,可以在Windows、UNIX、Linux和Mac OS等 *** 作系统上运行。
MySQL数据库是一款自由软件,大部分应用场景下都是免费使用。
MySQL功能强大且使用方便,社区生态繁荣,有诸多学习资料。
缺点:规模小,功能有限。
SQL Server
高度可扩展:可以从单一的笔记本电脑上运行任何东西或以高倍云服务器网络运行,或在两者之间任何东西。
“虽然说是“任何东西”,但是仍然要满足相关的软件和硬件的要求“
生态链广:具有内置的商务智能工具,以及一系列的分析和报告工具,可以创建数据库、备份、复制,带来了更好的安全性。
Oracle
Oracle数据库系统是目前世界上流行的关系数据库管理系统,具有以下特点:
可移植性好(在各类大、中、小、微机环境中都适用)
使用方便、
功能强
因此,Oracle是一种高效率、可靠性好的、适应高吞吐量的数据库解决方案。
DB2
DB2是IBM开发的一种大型关系型数据库平台。它支持多用户或应用程序在同一条SQL 语句中查询不同database甚至不同DBMS中的数据。它的应用特点如下:
支持面向对象的编程:db2支持复杂的数据结构,如无结构文本对象,可以对无结构文本对象进行布尔匹配、最接近匹配和任意匹配等搜索。可以建立用户数据类型和用户自定义函数。
支持多媒体应用程序:db2支持大二分对象(blob),允许在数据库中存取二进制大对象和文本大对象。其中,二进制大对象可以用来存储多媒体对象。
具有良好的备份和恢复能力
支持存储过程和触发器,用户可以在建表时显示的定义复杂的完整性规则
支持异构分布式数据库访问,支持数据复制
PostgreSQL
PostgreSQL 是一个免费的对象-关系数据库服务器(ORDBMS),它的 Slogan 是 “世界上最先进的开源关系型数据库”。
PostgreSQL具有如下特征:
函数:通过函数,可以在数据库服务器端执行指令程序。
索引:用户可以自定义索引方法,或使用内置的 B 树,哈希表与 GiST 索引。
触发器:触发器是由SQL语句查询所触发的事件。如:一个INSERT语句可能触发一个检查数据完整性的触发器。触发器通常由INSERT或UPDATE语句触发。 多版本并发控制:PostgreSQL使用多版本并发控制(MVCC,Multiversion concurrency control)系统进行并发控制,该系统向每个用户提供了一个数据库的”快照”,用户在事务内所作的每个修改,对于其他的用户都不可见,直到该事务成功提交。
规则:规则(RULE)允许一个查询能被重写,通常用来实现对视图(VIEW)的 *** 作,如插入(INSERT)、更新(UPDATE)、删除(DELETE)。
数据类型:包括文本、任意精度的数值数组、JSON 数据、枚举类型、XML 数据等。
全文检索:通过 Tsearch2 或 OpenFTS,83版本中内嵌 Tsearch2。
NoSQL:JSON,JSONB,XML,HStore 原生支持,至 NoSQL 数据库的外部数据包装器。
数据仓库:能平滑迁移至同属 PostgreSQL 生态的 GreenPlum,DeepGreen,HAWK 等,使用 FDW 进行 ETL
一个好的数据库产品不等于就有一个好的应用系统 如果不能设计一个合理的数据库模型 不仅会增加客户端和服务器段程序的编程和维护的难度 而且将会影响系统实际运行的性能 一般来讲 在一个MIS系统分析 设计 测试和试运行阶段 因为数据量较小 设计人员和测试人员往往只注意到功能的实现 而很难注意到性能的薄弱之处 等到系统投入实际运行一段时间后 才发现系统的性能在降低 这时再来考虑提高系统性能则要花费更多的人力物力 而整个系统也不可避免的形成了一个打补丁工程 笔者依据多年来设计和使用数据库的经验 提出以下一些设计准则 供同仁们参考
命名的规范
不同的数据库产品对对象的命名有不同的要求 因此 数据库中的各种对象的命名 后台程序的代码编写应采用大小写敏感的形式 各种对象命名长度不要超过 个字符 这样便于应用系统适应不同的数据库
游标(Cursor)的慎用
游标提供了对特定集合中逐行扫描的手段 一般使用游标逐行遍历数据 根据取出的数据不同条件进行不同的 *** 作 尤其对多表和大表定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等特甚至死机 笔者在某市《住房公积金管理系统》进行日终帐户滚积数计息处理时 对一个 万个帐户的游标处理导致程序进入了一个无限期的等特(后经测算需 个小时才能完成)(硬件环境 Alpha/ Mram Sco Unix Sybase ) 后根据不同的条件改成用不同的UPDATE语句得以在二十分钟之内完成 示例如下
Declare Mycursor cursor for select count_no from COUNT
Open Mycursor
Fetch Mycursor into @vcount_no
While (@@sqlstatus= )
Begin
If @vcount_no= 条件
*** 作
If @vcount_no= 条件
*** 作
Fetch Mycursor into @vcount_no
End
改为
Update COUNT set *** 作 for 条件
Update COUNT set *** 作 for 条件
在有些场合 有时也非得使用游标 此时也可考虑将符合条件的数据行转入临时表中 再对临时表定义游标进行 *** 作 可时性能得到明显提高 笔者在某地市〈电信收费系统〉数据库后台程序设计中 对一个表( 万行中符合条件的 多行数据)进行游标 *** 作(硬件环境 PC服务器 PII Mram NT Ms Sqlserver ) 示例如下
Create #tmp / 定义临时表 /
(字段
字段
)
Insert into #tmp select from TOTAL where
条件 / TOTAL中 万行 符合条件只有几十行 /
Declare Mycursor cursor for select from #tmp
/对临时表定义游标/
索引(Index)的使用原则
创建索引一般有以下两个目的 维护被索引列的唯一性和提供快速访问表中数据的策略 大型数据库有两种索引即簇索引和非簇索引 一个没有簇索引的表是按堆结构存储数据 所有的数据均添加在表的尾部 而建立了簇索引的表 其数据在物理上会按照簇索引键的顺序存储 一个表只允许有一个簇索引 因此 根据B树结构 可以理解添加任何一种索引均能提高按索引列查询的速度 但会降低插入 更新 删除 *** 作的性能 尤其是当填充因子(Fill Factor)较大时 所以对索引较多的表进行频繁的插入 更新 删除 *** 作 建表和索引时因设置较小的填充因子 以便在各数据页中留下较多的自由空间 减少页分割及重新组织的工作
数据的一致性和完整性
为了保证数据库的一致性和完整性 设计人员往往会设计过多的表间关联(Relation) 尽可能的降低数据的冗余 表间关联是一种强制性措施 建立后 对父表(Parent Table)和子表(Child Table)的插入 更新 删除 *** 作均要占用系统的开销 另外 最好不要用Identify 属性字段作为主键与子表关联 如果数据冗余低 数据的完整性容易得到保证 但增加了表间连接查询的 *** 作 为了提高系统的响应时间 合理的数据冗余也是必要的 使用规则(Rule)和约束(Check)来防止系统 *** 作人员误输入造成数据的错误是设计人员的另一种常用手段 但是 不必要的规则和约束也会占用系统的不必要开销 需要注意的是 约束对数据的有效性验证要比规则快 所有这些 设计人员在设计阶段应根据系统 *** 作的类型 频度加以均衡考虑
事务的陷阱
事务是在一次性完成的一组 *** 作 虽然这些 *** 作是单个的 *** 作 SQL Server能够保证这组 *** 作要么全部都完成 要么一点都不做 正是大型数据库的这一特性 使得数据的完整性得到了极大的保证
众所周知 SQL Server为每个独立的SQL语句都提供了隐含的事务控制 使得每个DML的数据 *** 作得以完整提交或回滚 但是SQL Server还提供了显式事务控制语句
BEGIN TRANSACTION 开始一个事务
MIT TRANSACTION 提交一个事务
ROLLBACK TRANSACTION 回滚一个事务
事务可以嵌套 可以通过全局变量@@trancount检索到连接的事务处理嵌套层次 需要加以特别注意并且极容易使编程人员犯错误的是 每个显示或隐含的事物开始都使得该变量加 每个事务的提交使该变量减 每个事务的回滚都会使得该变量置 而只有当该变量为 时的事务提交(最后一个提交语句时) 这时才把物理数据写入磁盘
数据库性能调整
在计算机硬件配置和网络设计确定的情况下 影响到应用系统性能的因素不外乎为数据库性能和客户端程序设计 而大多数数据库设计员采用两步法进行数据库设计 首先进行逻辑设计 而后进行物理设计 数据库逻辑设计去除了所有冗余数据 提高了数据吞吐速度 保证了数据的完整性 清楚地表达数据元素之间的关系 而对于多表之间的关联查询(尤其是大数据表)时 其性能将会降低 同时也提高了客 户端程序的编程难度 因此 物理设计需折衷考虑 根据业务规则 确定对关联表的数据量大小 数据项的访问频度 对此类数据表频繁的关联查询应适当提高数据冗余设计
数据类型的选择
数据类型的合理选择对于数据库的性能和 *** 作具有很大的影响 有关这方面的书籍也有不少的阐述 这里主要介绍几点经验
Identify字段不要作为表的主键与其它表关联 这将会影响到该表的数据迁移
Text 和Image字段属指针型数据 主要用来存放二进制大型对象(BLOB) 这类数据的 *** 作相比其它数据类型较慢 因此要避开使用
日期型字段的优点是有众多的日期函数支持 因此 在日期的大小比较 加减 *** 作上非常简单 但是 在按照日期作为条件的查询 *** 作也要用函数 相比其它数据类型速度上就慢许多 因为用函数作为查询的条件时 服务器无法用先进的性能策略来优化查询而只能进行表扫描遍历每行
例如 要从DATA_TAB 中(其中有一个名为DATE的日期字段)查询 年的所有记录
lishixinzhi/Article/program/Oracle/201311/17929
以上就是关于大数据库和数据库到底有什么区别和联系全部的内容,包括:大数据库和数据库到底有什么区别和联系、简单易用的数据库哪个比较好、什么是大型数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)