数据挖掘的概念和原理是什么

数据挖掘的概念和原理是什么,第1张

数据挖掘概述

数据挖掘又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

数据挖掘的定义

1技术上的定义及含义

数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。

与数据挖掘相近的同义词有数据融合、人工智能、商务智能、模式识别、机器学习、知识发现、数据分析和决策支持等。

数据挖掘的基本过程和主要步骤

这要分类型的,不同的领域有不同的学术会议

一,计算机网络领域

世界计算机算法最权威会议SODA

---全称ACM-SIAM Symposium on Discrete Algorithms。

世界计算机科学领域最顶级期刊JACM

---全称Journal of the Association for Computing Machinery,该期刊只发表世界计算机科学领域具有最重要意义的研究工作,每年仅收录30多篇。

世界数据库领域最顶级的期刊ACM TODS

---全称ACM Transactions on Database Systems,该期刊全年在全世界范围不过收录30篇高水平论文

世界计算机存储领域顶尖期刊ACM Transactions on Storage

---该期刊全年收录文章不超过20篇

世界程序语言设计领域顶级学术会议PLDI2007

---全称ACM SIGPLAN Conference on Programming Language Design and Implementation

世界物理学最权威学术刊PRL

---全称Physical Review Letter,国内大学计算机系目前只有清华计算机系发过两篇PRL

世界理论计算机领域顶级会议STOC

---全称ACM Symp on Theory of Computing

世界人工智能方面最顶级会议IJCAI

---全称International Joint Conferences on Artificial Intelligence

世界计算机视觉和模式识别领域顶级国际会CVPR

---全称IEEE Conference on Computer Vision and Pattern Recognition

世界信息检索领域顶级会议SIGIR

---全称ACM SIGIR Special Interest Group on Information Retrieval

世界数据挖掘领域最权威国际期刊IEEE TKDE

---全称IEEE Transactions on Knowledge and Data Engineering

世界数据库领域最顶级会议SIGMOD

---全称ACM's Special Interest Group on Management Of Data

世界计算机图形学最权威国际会议ACM SIGGRAPH

世界计算语言/自然语言处理领域最顶级会议ACL

---全称Association for Computational Linguistics

世界理论计算机科学顶级学术期刊Theoretical Computer Science

世界计算复杂性领域顶级会议CCC

---全称IEEE Conference on Computational Complexity

世界计算机视觉和模式识别领域顶尖期刊IEEE PAMI

---全称IEEE Transactions on Pattern Analysis and Machine Intelligence

世界集成电路设计领域最顶级会议DAC

---全称Design Automation Conference

世界人工智能领域顶级学术会议AAAI

---全称Association for the Advancement of Artificial Intelligence

世界互联网领域顶级会议>

二,环境卫生

2009武汉国际环境研讨会 - CESPN协办中国环境科学学会年会。暨当代环境科技、绿色产业和生态系统综合论坛第三届全国博士生学术会议-环境科学与工程第三届全国博士生学术会议G暨环境科学与工程新理论、新技术学术研讨会。环境与工程地球物理国际学术会议,会议由中国地质大学(武汉)和长江水利委员会联合主办,中国地球物理学会、国家自然科学基金委员会地学部、美国环境与工程地球物理学会和长江大学协办。第一届环境与工程地球物理国际学术会议(ICEEG)2004年6月7日至6月11日在武汉中国地质大学(武汉)隆重召开并取得圆满成功。

三,数据挖掘

1989年8月在美国底特律召开的第11届国际人工智能联合会议的专题讨论会上首次出现KDD这个术语。随后在1991年、1993年和1994年都举行KDD专题讨论会,汇集来自各个领域的研究人员和应用开发者,集中讨论数据统计、海量数据分析算法、知识表示、知识运用等问题。随着参与人员的不断增多,KDD于1995年由国际研讨会发展成为国际会议年会。

More conferences on data mining:

Design and Management of Data Warehouses(DMDW)

Int Conf on Data Mining(DMIN)

Research Issues on Data Mining and Knowledge Discovery(DMKD)

数据库管理国际会议(ACM-SIGMOD)

超大型数据库国际会议(VLDB)

数据库原理研讨会(PODS)

数据工程国际会议(ICDE)

扩展数据库技术国际会议(EDBT)

数据库理论国际会议(ICDT)

信息与知识管理国际会议(CIKM)

数据库系统高级应用国际会议(DASFAA)

随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势。数据挖掘主要是使用未来趋势和行为作出前摄的、基础知识的决策。下面北京电脑培训为大家介绍数据挖掘具备的功能。

一、自动预测趋势和行为

数据挖掘在大型数据库中自动查询预测信息,在很早之前,大量的手工分析问题都可以快速和直接的从数据本身得到结论。

二、关联分析

数据关联是数据中能够发现的一种重要知识。如果在两个和多个变值之间存在一定的规律,这就是所谓的相关性。关联可以分为简单相关、时间相关和因果相关。其中北京IT培训发现关联分析的目的主要是找出数据库中隐藏的网络。数据库中关联的数据有时是未知的、有时是已知的、有时是不确定的,所以关联分析生成的规则才具有可信度。

三、聚类

数据库中的记录能够分为一系类有意义的子集,即聚类。聚类能够提高人们对客观现实的理解,是概念记述和偏差分析的前提。北京IT培训发现聚类主要包括传统的模式识别方法和数学分类法。

四、概念描述

概念描述是对目标类别的内容的描述,以及此类目的相关特征的摘要。概念描述分为特征性描述和区别性描述,描述了不同物体之间的差异。北京电脑培训认为制定一类特征说明只会影响所有物体的共同要素。进行区别描述的方法还是很多种,如决策树方法、遗传学方法等。

研究数据挖掘的大学专业一般是人工智能专业,或者也可以叫作应用数学,然后研究大数据方向,总之和数学、人工智能分不开,下面将开始介绍。

数据挖掘是人工智能和数据库领域的一个热点问题。所谓的数据挖掘是指从数据库中的大量数据中揭示隐藏的、以前未知的和潜在有价值的信息的非平凡过程。数据挖掘是一个决策支持过程。它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业数据,进行归纳推理,挖掘潜在模式,帮助决策者调整市场策略,降低风险,做出正确决策。

人工智能简称AI。它是一门研究和发展用来模拟、扩展和扩展人类智能的理论、方法、技术和应用系统的新技术科学,他是计算机科学的一个分支,它试图理解智能的本质,并制造出一种新的智能机器,它可以以类似于人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。

自人工智能诞生以来,其理论和技术日益成熟,应用领域也在不断扩大。可以想象,未来人工智能带来的科技产品将是人类智慧的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类的智能,但它可以像人类一样思考,并可能超越人类的智能。一般,数据挖掘就是人工智能中的一个方向。

此外,数学就像一颗闪亮的星星,照亮着人们的生活可以说,没有数学,就不会有当今飞速发展的网络,也不会有大数据的出现;没有数学,就没有日益发展的计算机技术,也就没有智能时代数学在社会领域发挥着前所未有的作用。它促进了社会进步,改变了人们的思维。于是,大数据的快速发展进一步推动了数学向更深的领域发展,因此数学与大数据相辅相成,相互促进,所以,数学专业中也会有研究数据挖掘的专业。

所以,想学数据挖掘,就选数学专业。

1 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。

难易程度:非常易。

2 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。

难易程度:非常易。

3 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。

难易程度:易。

4 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。

难易程度:中。

5 Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。

难易程度:中。

6 推荐系统实践 (豆瓣) 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。

难易程度:中上。

7 数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。

难易程度:中上。

8 The Elements of Statistical Learning (豆瓣) 这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。

难易程度:难。

9 统计学习方法 (豆瓣) 李航老师的扛鼎之作,强烈推荐。

难易程度:难。

10 Pattern Recognition And Machine Learning (豆瓣) 经典中的经典。

这些都是在“绿色BI论坛”>

数据挖掘也称数据库中的知识发现,是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

学了数据挖掘之后能干啥?数据挖掘职业规划总结

文 | 宿痕

很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。

以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想往这方面发展的朋友共享:

数据挖掘从业人员工作分析

1数据挖掘从业人员的愿景:

数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。

A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)

B:算法工程师(在企业做数据挖掘及其相关程序算法的实现等)

C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)

2数据挖掘从业人员切入点:

根据上面的从业方向来说说需要掌握的技能。

A:做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,需要对开发、数据分析的必备基础知识。

B:算法工程师:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和 *** 作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘软件研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。

C:数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《数据挖掘原理》 等书籍那就更好了。

数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。

一、专业技能

本科或硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验;

熟练掌握常用的数据挖掘算法;

具备数理统计理论基础,并熟悉常用的统计工具软件。

二、行业知识

具有相关的行业知识,或者能够很快熟悉相关的行业知识

三、合作精神

具有良好的团队合作精神,能够主动和项目中其他成员紧密合作

四、客户关系能力

具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望;

具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力。

进阶能力要求

数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。

具有数据仓库项目实施经验,熟悉数据仓库技术及方法论

熟练掌握SQL语言,包括复杂查询、性能调优

熟练掌握ETL开发工具和技术

熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术

善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性 *** 作方案

五、应用及就业领域

当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。

当前它能解决的问题典型在于:数据库营销(DatabaseMarketing)、客户群体划分(Customer Segmentation&Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(ChurnAnalysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问著名的亚马逊网上书店会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book alsobought”,这背后就是数据挖掘技术在发挥作用。

数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, techniquesecond”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。

重点介绍下对数据挖掘的几个岗位

数据采集分析专员

职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。

求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。

市场/数据分析师

1、市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: DirectMarketing (直接面向客户的市场营销) 吧,自90年代以来,Direct Marketing越来越成为公司推销其产品的主要手段。

根据加拿大市场营销组织(CanadianMarketingAssociation)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报,他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。

例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。

2、行业适应性强:几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。

算法工程师

应该来说目前算法工程师基本上都集中在中大型企业中,因为一般小公司很少用到算法来解决问题,如果这公司就是做数据相关产业的。而算法一般的应用场景有推荐、广告、搜索等,所以大家常见的在广告领域、个性化推荐方面是有不少的同仁。常见的要求是懂JAVA/PYTHON/R中其中一种,能够知道常规的回归、随机森林、决策树、GBDT等算法,能够有行业背景最佳等。如果是deep learning方向可能对图论、画像识别等方面要求更高些。

求职建议:background稍微好一些,再把一些基本的算法都弄明白,能说清楚之间的区别和优缺点,包括常见的一些应用场景都有哪些。对于公司来说,特别是BAT这样使用机器学习的公司,算法工程师是很重要的一块资产。

现状与前景

数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较著名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。

据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。

根据IDC(InternationalDataCorporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。

现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。

众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术—数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!

职业薪酬

就目前来看,和大多IT业的职位一样,数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺。从BAT的招聘情况来看,数据挖掘领域相对来说门槛还是比较高的,但是薪酬福利也相对来说比较好,常见的比如腾讯、阿里都会给到年薪20W+。而厉害的资深算法专家年薪百万也是常有的事情,所以大家在算法方面还是大有可能。另外随着金融越来越互联网化,大量的算法工程师会成为以后互联网金融公司紧缺的人才。

大家共勉!

来自知乎

以上是小编为大家分享的关于学了数据挖掘之后能干啥?的相关内容,更多信息可以关注环球青藤分享更多干货

数据挖掘就是从大量的数据中,提取隐藏在其中的,事先不知道的、但潜在有用的信息的过程。数据挖掘的目标是建立一个决策模型,根据过去的行动数据来预测未来的行为。比如分析一家公司的不同用户对公司产品的购买情况,进而分析出哪一类客户会对公司的产品有兴趣。在讲究实时、竞争激烈的网络时代,若能事先破解消费者的行为模式,将是公司获利的关键因素之一。数据挖掘是一门交叉学科,它涉及了数据库,人工智能,统计学,可视化等不同的学科和领域。

数据挖掘是数据库中知识发现不可缺少的一部分,而KDD是将未加工的数据转换为有用信息的整个过程,该过程包括一系列转换步骤, 从数据的预处理到数据挖掘结果的后处理。

以上就是关于数据挖掘的概念和原理是什么全部的内容,包括:数据挖掘的概念和原理是什么、学术会议有哪些、数据挖掘具备哪些功能等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9356654.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存