区别:
1、数据库是面向事务的设计,数据仓库是面向主题设计的。
2、数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
3、数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
4、数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。
5、数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。
联系:
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
扩展资料:
1、面向主题的:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。
这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。
2、与时间相关:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
3、不可修改:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
参考资料来源:百度百科-数据仓库
数据挖掘就是从大量数据中寻找隐含模式或规律的技术,其有效性及可行性有哲学上的质量互变规律及当前的数据库管理技术来保证。从哲学意义上讲,数据挖掘的主要任务就在于,预测量变发展的趋势或在量变的积累导致质变的发生之前提前预知,或者解释描述当前量变发生发展的状态及规律。数据挖掘认知?发掘出数据中隐藏的模式、趋势、比较稳定的关系或规则的过程?通过自动或半自动的方式对海量数据进行处理?将发掘出的东西以易于理解的方式呈现,从而提供有价值的决策支持?它广泛涉及统计学、数据库技术、人工智能(机器学习)以及业务/行业知识等?其核心往往体现为一些对数据及相关规则进行处理的算法数据挖掘若干任务?对数据的探索式分析:基于数据可视化及交互性进行数据集理解的开放性探索,没有明确的目的?描述性模型建构:对数据集或其产生过程进行描述,形成模型,比如概率分布、分段分析、聚类分析等?预测性模型建构:基于已有数据集学习建立模型以预测未来的状态,比如分类、回归分析等?发现模式或规则:按照不断变换的条件、约束或关系,从数据集中发掘或提炼有意义的模式或规则?基于内容的检索:基于某种相似度或匹配度,在数据集中检索某类感兴趣的模式数据挖掘的一般过程?数据准备:数据的筛选、清洗、转换、整合?数据挖掘:核心步骤,对准备好的数据运行算法进行学习、发现或构造?模式/模型评估:对所发现的模式或所构造的模型进行验证评估并反馈继续优化?知识表示:将挖掘出来的模式或构造的模型以易于理解的方式呈现给用户数据挖掘常用算法这里从略。我们能为您做什么??我们能为您分析并选择问题,建立相应的数据挖掘应用;?我们有丰富的算法库作为支撑,同时也能定制编写更高效更具针对性的数据处理算法?我们拥有交互性极强的、基于SVG的数据可视化技术,其图形能基于内容被搜索数据挖掘和机器学习的区别和联系,周志华有一篇很好的论述《机器学习与数据挖掘》可以帮助大家理解。数据挖掘受到很多学科领域的影响,其中数据库、机器学习、统计学无疑影响最大。简言之,对数据挖掘而言,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能再进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖掘发挥影响,而机器学习和数据库则是数据挖掘的两大支撑技术。从数据分析的角度来看,绝大多数数据挖掘技术都来自机器学习领域,但机器学习研究往往并不把海量数据作为处理对象,因此,数据挖掘要对算法进行改造,使得算法性能和空间占用达到实用的地步。同时,数据挖掘还有自身独特的内容,即关联分析。而模式识别和机器学习的关系是什么呢,传统的模式识别的方法一般分为两种:统计方法和句法方法。句法分析一般是不可学习的,而统计分析则是发展了不少机器学习的方法。也就是说,机器学习同样是给模式识别提供了数据分析技术。至于,数据挖掘和模式识别,那么从其概念上来区分吧,数据挖掘重在发现知识,模式识别重在认识事物。???????????机器学习的目的是建模隐藏的数据结构,然后做识别、预测、分类等。因此,机器学习是方法,模式识别是目的|||好问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。|||不错,数据挖掘其实就是模式识别的一种方法
1数据挖掘
数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘。综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析(狭义)与数据挖掘构成广义的数据分析。这些内容与数据分析都是不一样的。
2数据分析
其实我们可以这样说,数据分析是对数据的一种 *** 作手段,或者算法。目标是针对先验的约束,对数据进行整理、筛选、加工,由此得到信息。数据挖掘,是对数据分析手段后的信息,进行价值化的分析。而数据分析和数据挖掘,又是甚至是递归的。就是数据分析的结果是信息,这些信息作为数据,由数据去挖掘。而数据挖掘,又使用了数据分析的手段,周而复始。由此可见,数据分析与数据挖掘的区别还是很明显的。
而两者的具体区别在于:
(其实数据分析的范围广,包含了数据挖掘,在这里区别主要是指统计分析)
数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。
约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。
对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。
结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。
数据分析是把数据变成信息的工具,数据挖掘是把信息变成认知的工具,如果我们想要从数据中提取一定的规律(即认知)往往需要数据分析和数据挖掘结合使用。
举个例子说明:你揣着50元去菜市场买菜,对于琳琅满目的鸡鸭鱼猪肉以及各类蔬菜,想荤素搭配,你逐一询问价格,不断进行统计分析,能各自买到多少肉,多少菜,大概能吃多久,心里得出一组信息,这就是数据分析。而关系到你做出选择的时候就需要对这些信息进行价值评估,根据自己的偏好,营养价值,科学的搭配,用餐时间计划,最有性价比的组合等等,对这些信息进行价值化分析,最终确定一个购买方案,这就是数据挖掘。
数据分析与数据挖掘的结合最终才能落地,将数据的有用性发挥到极致。
数据分析和数据挖掘都是从数据库中发现知识、所以我们称数据分析和数据挖掘叫做数据库中的知识发现。但严格意义上来讲,数据挖掘才是真正意义上的数据库中的知识发现(Knowledge Discovery in Database,KDD)。
数据分析是从数据库中通过统计、计算、抽样等相关的方法,获取基于数据库的数据表象的知识,也就是指数据分析是从数据库里面得到一些表象性的信息。数据挖掘是从数据库中,通过机器学习或者是通过数学算法等相关的方法获取深层次的知识(比如属性之间的规律性,或者是预测)的技术。
随着GIS技术在各个行业的应用以及数据挖掘 空间数据采集技术 数据库技术的迅速发展 对从空间数据库发现隐含知识的需求日益增长 从而出现了用于在空间数据库中进行知识发现的技术——空间数据挖掘(Spatial Data Mining 本文简称为SDM) 空间数据挖掘是从空间数据库中提取隐含的 用户感兴趣的空间和非空间模式和普遍特征的过程
本文分析了空间数据库知识发现面临的困难 研究了扩展传统数据挖掘方法如分类 关联规则 聚类等到空间数据库的方法 并对空间数据库系统实现技术及空间数据挖掘系统开发模式等进行了比较分析
空间数据库知识发现面临的困难
从空间数据库发现知识的传统途径是通过专家系统 数据挖掘 空间分析等技术来实现的 但是在空间数据库隐含知识的发现方面 只单独依某一种技术 往往存在着这样或那样的缺陷 对于专家系统来讲 专家系统不具备自动学习的能力 GIS中的专家系统也达不到真正的智能系统的要求 仅能利用已有的知识进行推导 对于数据挖掘来讲 空间数据库与普通数据库的在数据存储机制的不同和空间数据的相互依赖性等特点决定了在空间数据库无法直接采用传统的数据挖掘方法 对于空间分析来讲 虽然空间分析中常用的统计方法可以很好地处理数字型数据 但是它存在的问题很多 如统计方法通常假设空间分布的数据间是统计上独立的 而现实中空间对象间一般是相互关联的;其次 统计模型一般只有具有相当丰富领域知识和统计方面经验的统计专家才能用;另外 统计方法对大规模数据库的计算代价非常高 所以在处理海量数据方面能力较低
从上面的分析可以看出 由于空间数据具有诸多特点 因此在空间数据库进行知识发现 需要克服使用单一技术的缺陷 即需要融合多种不同技术 所以研究人员提出了空间数据挖掘技术来解决从空间数据库知识发现隐含知识的难题
空间数据挖掘是多学科和多种技术交综合的新领域 它综合了机器学习 空间数据库系统 专家系统 可移动计算 统计 遥感 基于知识的系统 可视化等领域的有关技术
空间数据挖掘利用空间数据结构 空间推理 计算几何学等技术 把传统的数据挖掘技术扩充到空间数据库并提出很多新的有效的空间数据挖掘方法 与传统空间分析方法相比 它在实现效率 与数据库系统的结合 与用户的交互 发现新类型的知识等方面的能力大大增强 空间数据挖掘能与GIS的结合 使GIS系统具有自动学习的功能 能自动获取知识 从而成为真正的智能空间信息系统
扩展传统数据挖掘方法到空间数据库
空间数据挖掘技术按功能划分可分为三类 描述 解释 预测 描述性的模型将空间现象的分布特征化 如空间聚类 解释性的模型用于处理空间关系 如处理一个空间对象和影响其空间分布的因素之间的关系 预测型的模型用来根据给定的一些属性预测某些属性 预测型的模型包括分类 回归等 以下介绍将几个典型的数据挖掘技术聚类 分类 关联规则扩展到空间数据库的方法
聚类分析方法按一定的距离或相似性测度将数据分成一系列相互区分的组 而空间数据聚类是按照某种距离度量准则 在某个大型 多维数据集中标识出聚类或稠密分布的区域 从而发现数据集的整个空间分布模式 经典统计学中的聚类分析方法对海量数据效率很低 而数据挖掘中的聚类方法可以大大提高聚类效率 文献[ ]中提出两个基于CLARANS聚类算法空间数据挖掘算法SD和ND 可以分别用来发现空间聚类中的非空间特征和具有相同非空间特征的空间聚类 SD算法首先用CLARANS算法进行空间聚类 然后用面向属性归纳法寻找每个聚类中对象的高层非空间描述;ND算法则反之 文献[ ]中提出一种将传统分类算法ID 决策树算法扩展到空间数据库的方法 该算法给出了计算邻近对象非空间属性的聚合值的方法 并且通过对空间谓词进行相关性分析和采用一种逐渐求精的策略使得计算时间复杂度大大降低 Koperski等[ ]将大型事务数据库的关联规则概念扩展到空间数据库 用以找出空间对象的关联规则 此方法采用一种逐渐求精的方法计算空间谓词 首先在一个较大的数据集上用MBR最小边界矩形结构技术对粗略的空间谓词进行近似空间运算 然后在裁剪过的数据集上用代价较高的算法进一步改进挖掘的质量
空间数据库实现技术
空间数据挖掘系统中 空间数据库负责空间数据和属性数据的管理 它的实现效率对整个挖掘系统有着举足轻重的影响 所以下面详细介绍空间数据库的实现技术
根据空间数据库中空间数据和属性数据的管理方式 空间数据库有两种实现模式 集成模式和混合模式 后者将非空间数据存储在关系数据库中 将空间数据存放在文件系统中 这种采用混合模式的空间数据库中 空间数据无法获得数据库系统的有效管理 并且空间数据采用各个厂商定义的专用格式 通用性差 而集成模式是将空间数据和属性数据全部存储在数据库中 因此现在的GIS软件都在朝集成结构的空间数据库方向发展 下面对集成结构的空间数据库技术中的两个主流技术基于空间数据引擎技术的空间数据库和以Oracle Spatial为代表的通用空间数据库进行比较分析
空间数据引擎是一种处于应用程序和数据库管理系统之间的中间件技术 使用不同GIS厂商的客户可以通过空间数据引擎将自身的数据交给大型关系型DBMS统一管理;同样 客户也可以通过空间数据引擎从关系型DBMS中获取其他类型GIS的数据 并转化成客户可使用的方式 它们大多是在Oracle i Spatial(较成熟的空间数据库版本 于 年 月推出)推出之前由GIS软件开发商提供的将空间数据存入通用数据库的解决方案 且该方案价格昂贵
Oracle Spatial提供一个在数据库管理系统中管理空间数据的完全开放体系结构 Oracle Spatial提供的功能与数据库服务器完全集成 用户通过SQL定义并 *** 作空间数据 且保留了Oracle的一些特性 如灵活的n 层体系结构 对象定义 健壮的数据管理机制 Java存储过程 它们确保了数据的完整性 可恢复能力和安全性 而这些特性在混合模式结构中几乎不可能获得 在Oracle Spatial中 用户可将空间数据当作数据库的特征使用 可支持空间数据库的复制 分布式空间数据库以及高速的批量装载 而空间中间件则不能 除了允许使用所有数据库特性以外 Spatial Cart ridge还提供用户使用行列来快速访问数据 使用简单的SQL语句 应用者就能直接选取多个记录 Spatial Cart ridge数据模型也给数据库管理员提供了极大的灵活性 DBA可使用常见的管理和调整数据库的技术
空间数据挖掘系统的开发
通用SDM系统
在空间数据挖掘系统的开发方面 国际上最著名的有代表性的通用SDM系统有 GeoMiner Descartes和ArcView GIS的S PLUS接口 GeoMiner是加拿大Simon Fraser大学开发的著名的数据挖掘软件DBMiner的空间数据挖掘的扩展模块 空间数据挖掘原型系统GeoMiner包含有三大模块 空间数据立方体构建模块 空间联机分析处理(OLAP)模块和空间数据采掘模块 能够进行交互式地采掘并显示采掘结果 空间数据采掘模块能采掘 种类型的规则 特征规则 判别规则和关联规则 GeoMiner采用SAND体系结构 采用的空间数据采掘语言是GMQL 其空间数据库服务器包括MapInfo ESRI/OracleSDE Informix Illustra以及其它空间数据库引擎
Descartes可支持可视化的分析空间数据 它与开发此软件的公司所开发的数据挖掘工具Kepler结合使用 Kepler完成数据挖掘任务且拥有自己的表现数据挖掘结果的非图形界面 Kepler和Descarte动态链接 把传统DM与自动作图可视化和图形表现 *** 作结合起来 实现C 决策树算法 聚类 关联规则的挖掘
ArcView GIS的S PLUS接口是著名的ESRI公司开发的 它提供工具分析空间数据中指定类
除了以上空间数据挖掘系统外 还有GwiM等系统
从以上SDM系统可以看出 它们的共同优点是把传统DM与地图可视化结合起来 提供聚类 分类等多种挖掘模式 但它们在空间数据的 *** 作上实现方式不尽相同 Descartes是专门的空间数据可视化工具 它只有与DM工具Kepler结合在一起 才能完成SDM任务 而GeoMiner是在MapInfo平台上二次开发而成 系统庞大 造成较大的资源浪费 S PLUS的局限在于 它采用一种解释性语言(Script) 其功能的实现比用C和C++直接实现要慢得多 所以只适合于非常小的数据库应用 基于现存空间数据挖掘系统的结构所存在的缺陷 我们提出空间数据挖掘系统一种新的实现方案
lishixinzhi/Article/program/SQL/201311/16146
以上就是关于简述数据仓库与关系数据库的区别与联系全部的内容,包括:简述数据仓库与关系数据库的区别与联系、数据挖掘与模式识别,两者有何区别和联系、数据挖掘与数据分析的区别是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)