相比甲骨文中国在中国市场的裁员风波,同为数据库服务的MongoDB显得更为乐观。“MongoDB是中国开发者最喜欢用的一个数据库。”MongoDB全球渠道及亚太区销售高级副总裁Alan Chhabra带着一点自信和骄傲在媒体面前宣称。
中国企业的数字化转型正进入关键期,在打造开放、高效、灵活、共享的云计算基础设施的同时,数据库的更新换代也被提上了日程。
日前,非结构化数据库平台提供商MongoDB在上海举办用户大会,MongoDB全球渠道及亚太区销售高级副总裁Alan Chhabra接受了亿欧企业服务频道的采访, 并针对去年修改开源协议,在SSPL的不同许可机制下授权服务器软件的争议以及其他疑问作出回应。
数据库的本质是解决数据的存储和管理问题。 Alan Chhabra表示,对企业发展具有战略意义的数据库正在催生巨大的市场。
在这些潜力颇大的数据库中,市场上目前存在着的是关系型的传统数据库和以Mongo DB为代表的非关联式新型数据库。传统数据库比较典型的是甲骨文旗下的Oracle数据库、IBM推出的大数据平台Hadoop和Stream Computing、微软的SQL Server、SAP以及EMC Greenplum。 他们的主要差别在于数据库的结构化和非结构化。
结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据,存储和排列很有规律,这对查询和修改等 *** 作很有帮助,但扩展性和灵活性欠佳。 非结构化数据库就是各种文档、、视频/音频等没有固定结构的数据,一般直接整体进行存储为二进制的数据格式。 目前涵盖分布式数据库、图数据库、流数据库、时空数据库和众包数据库等多个领域。
MongoDB是文档型的非结构化新型数据库,Alan Chhabra表示, 与传统数据库相比,更能满足用户数据存储量大、计算灵活的需求。“在某些客户某些案例上,我们已经取代了传统数据库,比如甲骨文。”
当前, 软件对于商业模式的改变、开发人员地位的提高,以及企业向云端迁移的趋势 都让数据服务公司的发展得到了助力。但从毕马威会计事务所对首席信息官的调查结果来看, 88%的首席信息官认为他们未能从数字化战略中充分获益;82%的首席信息官认为其所在机构在利用技术推动业务发展方面并非“卓有成效”。 也就是说, 大多数公司的数字化战略是以失败告终的。
在此背景下,更加灵活、性能更加强大的新型数据库在一些领域获得了试验田丰收,并且可以看到,随着客户数据需求的繁杂程度的日益增加,传统数据库也在自我革新,以迎头赶上数据浪潮的大变革。
MongoDB成立于2007年,2017年在纳斯达克上市。最初,MongoDB是一项面向技术爱好者的技术,如今已成为一项企业级的业务关键技术。通过不断开发数据库即服务(Database-as-a-Service)产品,积极拥抱云计算,MongoDB在过去十年里,为开发人员提供了处理数据的方法。正因如此,它也成了企业数字化转型战略的一个关键部分。
MongoDB提供的产品主要包括MongoDB云服务MongoDB Atlas、MongoDB Mobile、MongoDB企业版和MongoDB Stitch等十余个相关产品。Alan Chhabra表示,产品包括了 开源版、付费版和云版。
2018 年 10 月,MongoDB宣布其开源许可证将从GNU AGPLv3切换到SSPL,新许可证将适用于新版本的MongoDB Community Server以及打过补丁的旧版本,这一举动引发了行业热议。基于GNU AGPLv3协议,企业可以将MongoDB作为公共服务但这需要企业开源自己的软件或是获得MongoDB的商业授权,事实却是MongoDB发现许多企业正在违反协议“疯狂试探”甚至已经违反协议。 SSPL( Server Side Public License)顾名思义,要求使用者必须得到服务器端公共许可证,这一协议会进一步约束商业公司使用MongoDB服务。
Alan Chhabra向亿欧解释, SSPL 针对的是提供MongoDB托管服务的云服务厂商。 也就是说,如果不是云服务厂商,没有公然售卖MongoDB产品,而只是作为应用后台数据库来使用的话,那么无论你是电商、物联网、金融、社交、 游戏 、移动应用等等,一概都不会有任何影响。 “MongoDB的宗旨还是为了始终支持并保护创新开放。”
但此开源协议的修改明显带来了市场用户的“掉粉”,比如Linux 社区的接连“弃用”,以及AWS 、IBM、微软推出了兼容MongoDB的相关产品来服务用户。
数据库开源的商业变现与创新形成的矛盾,目前似乎还尚未找到解决方案。
Alan Chhabra在大会上也透露了MongoDB的未来计划, 即将基于智能运营数据平台和下一代基础架构、文化、方法论和安全,推动原有系统的现代化、数据即服务、云数据策略、业务敏捷性,进而帮助客户实现以数据驱动的数字化转型。
针对MongoDB在中国的发展情况, Alan Chhabra表示,公司将以创新立足,持续引领数据库技术发展潮流,与合作伙伴携手助力中国企业的数字化转型。
MongoDB北亚区副总裁苏玉龙认为:“中国是数据大国,而数据就是未来的石油。如何利用好数据,让数据石油助力中国企业腾飞是MongoDB希望在中国达成的事情。随着中国企业数字化转型逐渐走向深入,MongoDB数据库的价值得到不断释放。”
本文作者龚晨霞,微信Gcx847076575,欢迎关注企业服务和产业互联网的朋友加微信交流。
“大数据”(Bigdata)是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
数据仓库:为企业所有级别的决策制定过程,提供所有类型数据支持的战略(数据)集合。
大数据:所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
传统数据库:一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
其实从三个定义,我们好像区别不大。
数据库指的是数据的集合,数据仓库也是一个数据集合,大数据也是一个处理和存储数据的地方。
但是不同的是,在于应用场景,和构建的技术原理不一样。
传统数据库是存储根据范式建模的关系型数据,主要用于OLTP(on-line transaction processing)翻译为联机事务处理的软件。大数据是根据map redurce范式构建的出局处理,存储的软件,主要用于OLAP是做分析处理。大数据和传统数据库,还有一个更大的区别在于,处理的数据量以及计算量的大小,当传统数据库,无法在人可以接受的短时间内计算出结果,那这个数据就叫大数据,需要使用到大数据技术处理。而数据仓库本质上是一种数据的处理方式,而不是一种基础软件,它可以依赖于传统数据库,也可以依赖大数据技术去构建。
可以参考这篇文章:数据仓库(2)数据仓库、大数据与传统数据库的区别 - 知乎 (zhihucom)
以上就是关于MongoDB挑战传统数据库:非结构化数据库的迭新不容小觑全部的内容,包括:MongoDB挑战传统数据库:非结构化数据库的迭新不容小觑、大数据的定义是什么、详解数据仓库和数据库的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)