如何使用geo数据库分析基因表达与预后的关系

如何使用geo数据库分析基因表达与预后的关系,第1张

在NCBI的GEO数据中,系列(series)中matrix目录下的GSExxx_series_matrixtxtgz文件,其中的数据是什么含义。是不是别人已经标准化好的数据(而且是log2处理过的),我可以用来直接求倍数然后看表达差异

GSExxx_series_matrixtxtgz数据格式和楼主的数据截图类似,差别在于列标题,楼主的列标题是GSMxxxxxxCEL,而从GEO下载的GSExxx_series_matrixtxtgz的数据,列标题是GSMxxxxxx,无“CEL”。

ID_REF GSM413894 GSM413895 GSM413896 GSM413897 GSM413898 GSM413899 GSM413900 GSM413901

AFFX-BioB-3_at 8472861 758379 7726437 7808923 8604332 860782 8343771 8628157

AFFX-BioB-5_at 865537 7696443 7996466 7719412 8770542 8652599 8404749 8911979

AFFX-BioB-M_at 8813823 7890245 8127718 8306655 9011187 891993 8566244 906862

AFFX-BioC-3_at 9633732 9024885 9136383 9120244 102995 1015661 1000954 1025113

AFFX-BioC-5_at 9756588 9118516 9137075 9544678 9945514 9793713 9544567 9861975

AFFX-BioDn-3_at 120726 1167344 1162215 119874 1216764 1197144 1181811 120963

差异表达基因的筛选(阀值)以及后面的生物信息分析都可以做的。

差异表达基因筛选步骤:选择GEO数据——下载芯片数据——差异分析(方法有很多:SAM法,R包处理,T-test检验等)——选择想要的阈值(Fold change >4)

随着GIS技术在各个行业的应用以及数据挖掘 空间数据采集技术 数据库技术的迅速发展 对从空间数据库发现隐含知识的需求日益增长 从而出现了用于在空间数据库中进行知识发现的技术——空间数据挖掘(Spatial Data Mining 本文简称为SDM) 空间数据挖掘是从空间数据库中提取隐含的 用户感兴趣的空间和非空间模式和普遍特征的过程

本文分析了空间数据库知识发现面临的困难 研究了扩展传统数据挖掘方法如分类 关联规则 聚类等到空间数据库的方法 并对空间数据库系统实现技术及空间数据挖掘系统开发模式等进行了比较分析

空间数据库知识发现面临的困难

从空间数据库发现知识的传统途径是通过专家系统 数据挖掘 空间分析等技术来实现的 但是在空间数据库隐含知识的发现方面 只单独依某一种技术 往往存在着这样或那样的缺陷 对于专家系统来讲 专家系统不具备自动学习的能力 GIS中的专家系统也达不到真正的智能系统的要求 仅能利用已有的知识进行推导 对于数据挖掘来讲 空间数据库与普通数据库的在数据存储机制的不同和空间数据的相互依赖性等特点决定了在空间数据库无法直接采用传统的数据挖掘方法 对于空间分析来讲 虽然空间分析中常用的统计方法可以很好地处理数字型数据 但是它存在的问题很多 如统计方法通常假设空间分布的数据间是统计上独立的 而现实中空间对象间一般是相互关联的;其次 统计模型一般只有具有相当丰富领域知识和统计方面经验的统计专家才能用;另外 统计方法对大规模数据库的计算代价非常高 所以在处理海量数据方面能力较低

从上面的分析可以看出 由于空间数据具有诸多特点 因此在空间数据库进行知识发现 需要克服使用单一技术的缺陷 即需要融合多种不同技术 所以研究人员提出了空间数据挖掘技术来解决从空间数据库知识发现隐含知识的难题

空间数据挖掘是多学科和多种技术交综合的新领域 它综合了机器学习 空间数据库系统 专家系统 可移动计算 统计 遥感 基于知识的系统 可视化等领域的有关技术

空间数据挖掘利用空间数据结构 空间推理 计算几何学等技术 把传统的数据挖掘技术扩充到空间数据库并提出很多新的有效的空间数据挖掘方法 与传统空间分析方法相比 它在实现效率 与数据库系统的结合 与用户的交互 发现新类型的知识等方面的能力大大增强 空间数据挖掘能与GIS的结合 使GIS系统具有自动学习的功能 能自动获取知识 从而成为真正的智能空间信息系统

扩展传统数据挖掘方法到空间数据库

空间数据挖掘技术按功能划分可分为三类 描述 解释 预测 描述性的模型将空间现象的分布特征化 如空间聚类 解释性的模型用于处理空间关系 如处理一个空间对象和影响其空间分布的因素之间的关系 预测型的模型用来根据给定的一些属性预测某些属性 预测型的模型包括分类 回归等 以下介绍将几个典型的数据挖掘技术聚类 分类 关联规则扩展到空间数据库的方法

聚类分析方法按一定的距离或相似性测度将数据分成一系列相互区分的组 而空间数据聚类是按照某种距离度量准则 在某个大型 多维数据集中标识出聚类或稠密分布的区域 从而发现数据集的整个空间分布模式 经典统计学中的聚类分析方法对海量数据效率很低 而数据挖掘中的聚类方法可以大大提高聚类效率 文献[ ]中提出两个基于CLARANS聚类算法空间数据挖掘算法SD和ND 可以分别用来发现空间聚类中的非空间特征和具有相同非空间特征的空间聚类 SD算法首先用CLARANS算法进行空间聚类 然后用面向属性归纳法寻找每个聚类中对象的高层非空间描述;ND算法则反之 文献[ ]中提出一种将传统分类算法ID 决策树算法扩展到空间数据库的方法 该算法给出了计算邻近对象非空间属性的聚合值的方法 并且通过对空间谓词进行相关性分析和采用一种逐渐求精的策略使得计算时间复杂度大大降低 Koperski等[ ]将大型事务数据库的关联规则概念扩展到空间数据库 用以找出空间对象的关联规则 此方法采用一种逐渐求精的方法计算空间谓词 首先在一个较大的数据集上用MBR最小边界矩形结构技术对粗略的空间谓词进行近似空间运算 然后在裁剪过的数据集上用代价较高的算法进一步改进挖掘的质量

空间数据库实现技术

空间数据挖掘系统中 空间数据库负责空间数据和属性数据的管理 它的实现效率对整个挖掘系统有着举足轻重的影响 所以下面详细介绍空间数据库的实现技术

根据空间数据库中空间数据和属性数据的管理方式 空间数据库有两种实现模式 集成模式和混合模式 后者将非空间数据存储在关系数据库中 将空间数据存放在文件系统中 这种采用混合模式的空间数据库中 空间数据无法获得数据库系统的有效管理 并且空间数据采用各个厂商定义的专用格式 通用性差 而集成模式是将空间数据和属性数据全部存储在数据库中 因此现在的GIS软件都在朝集成结构的空间数据库方向发展 下面对集成结构的空间数据库技术中的两个主流技术基于空间数据引擎技术的空间数据库和以Oracle Spatial为代表的通用空间数据库进行比较分析

空间数据引擎是一种处于应用程序和数据库管理系统之间的中间件技术 使用不同GIS厂商的客户可以通过空间数据引擎将自身的数据交给大型关系型DBMS统一管理;同样 客户也可以通过空间数据引擎从关系型DBMS中获取其他类型GIS的数据 并转化成客户可使用的方式 它们大多是在Oracle i Spatial(较成熟的空间数据库版本 于 年 月推出)推出之前由GIS软件开发商提供的将空间数据存入通用数据库的解决方案 且该方案价格昂贵

Oracle Spatial提供一个在数据库管理系统中管理空间数据的完全开放体系结构 Oracle Spatial提供的功能与数据库服务器完全集成 用户通过SQL定义并 *** 作空间数据 且保留了Oracle的一些特性 如灵活的n 层体系结构 对象定义 健壮的数据管理机制 Java存储过程 它们确保了数据的完整性 可恢复能力和安全性 而这些特性在混合模式结构中几乎不可能获得 在Oracle Spatial中 用户可将空间数据当作数据库的特征使用 可支持空间数据库的复制 分布式空间数据库以及高速的批量装载 而空间中间件则不能 除了允许使用所有数据库特性以外 Spatial Cart ridge还提供用户使用行列来快速访问数据 使用简单的SQL语句 应用者就能直接选取多个记录 Spatial Cart ridge数据模型也给数据库管理员提供了极大的灵活性 DBA可使用常见的管理和调整数据库的技术

空间数据挖掘系统的开发

通用SDM系统

在空间数据挖掘系统的开发方面 国际上最著名的有代表性的通用SDM系统有 GeoMiner Descartes和ArcView GIS的S PLUS接口 GeoMiner是加拿大Simon Fraser大学开发的著名的数据挖掘软件DBMiner的空间数据挖掘的扩展模块 空间数据挖掘原型系统GeoMiner包含有三大模块 空间数据立方体构建模块 空间联机分析处理(OLAP)模块和空间数据采掘模块 能够进行交互式地采掘并显示采掘结果 空间数据采掘模块能采掘 种类型的规则 特征规则 判别规则和关联规则 GeoMiner采用SAND体系结构 采用的空间数据采掘语言是GMQL 其空间数据库服务器包括MapInfo ESRI/OracleSDE Informix Illustra以及其它空间数据库引擎

Descartes可支持可视化的分析空间数据 它与开发此软件的公司所开发的数据挖掘工具Kepler结合使用 Kepler完成数据挖掘任务且拥有自己的表现数据挖掘结果的非图形界面 Kepler和Descarte动态链接 把传统DM与自动作图可视化和图形表现 *** 作结合起来 实现C 决策树算法 聚类 关联规则的挖掘

ArcView GIS的S PLUS接口是著名的ESRI公司开发的 它提供工具分析空间数据中指定类

除了以上空间数据挖掘系统外 还有GwiM等系统

从以上SDM系统可以看出 它们的共同优点是把传统DM与地图可视化结合起来 提供聚类 分类等多种挖掘模式 但它们在空间数据的 *** 作上实现方式不尽相同 Descartes是专门的空间数据可视化工具 它只有与DM工具Kepler结合在一起 才能完成SDM任务 而GeoMiner是在MapInfo平台上二次开发而成 系统庞大 造成较大的资源浪费 S PLUS的局限在于 它采用一种解释性语言(Script) 其功能的实现比用C和C++直接实现要慢得多 所以只适合于非常小的数据库应用 基于现存空间数据挖掘系统的结构所存在的缺陷 我们提出空间数据挖掘系统一种新的实现方案

lishixinzhi/Article/program/SQL/201311/16146

要在GEO数据库中找到对应文章,可以使用GEO数据库的搜索功能。您可以按照关键字、主题或作者等信息进行搜索,以便找到您所需的文章。您也可以使用GEO数据库的筛选功能,根据文章的发表日期、出版社、语言等信息进行筛选,以便更加准确地找到您所需的文章。此外,您还可以使用GEO数据库的高级搜索功能,根据文章的标题、关键词、摘要等信息进行搜索,以便更加精准地找到您所需的文章。

GEO筛选差异,KOBAS注释分析。

GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析

利用基因在不同物种之间的保守性,任何基因组的数据都可以映射到这些数据库中去。

以上就是关于如何使用geo数据库分析基因表达与预后的关系全部的内容,包括:如何使用geo数据库分析基因表达与预后的关系、如何对GEO数据库中已有的数据进行分析、全面解析基于空间数据库的数据挖掘技术[1]等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9360028.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存