Yandex在2016年6月15日开源了一个数据分析的数据库,名字叫做ClickHouse,这对保守俄罗斯人来说是个特大事。更让人惊讶的是,这个列式存储数据库的跑分要超过很多流行的商业MPP数据库软件,例如Vertica。如果你没有听过Vertica,那你一定听过 Michael Stonebraker,2014年图灵奖的获得者,PostgreSQL和Ingres发明者(Sybase和SQL Server都是继承 Ingres而来的), Paradigm4和SciDB的创办者。Michael Stonebraker于2005年创办Vertica公司,后来该公司被HP收购,HP Vertica成为MPP列式存储商业数据库的高性能代表,Facebook就购买了Vertica数据用于用户行为分析。
简单的说,ClickHouse作为分析型数据库,有三大特点:一是跑分快, 二是功能多 ,三是文艺范
1 跑分快: ClickHouse跑分是Vertica的5倍快:
ClickHouse性能超过了市面上大部分的列式存储数据库,相比传统的数据ClickHouse要快100-1000X,ClickHouse还是有非常大的优势:
100Million 数据集:
ClickHouse比Vertica约快5倍,比Hive快279倍,比My SQL快801倍
1Billion 数据集:
ClickHouse比Vertica约快5倍,MySQL和Hive已经无法完成任务了
2 功能多:ClickHouse支持数据统计分析各种场景
- 支持类SQL查询,
- 支持繁多库函数(例如IP转化,URL分析等,预估计算/HyperLoglog等)
- 支持数组(Array)和嵌套数据结构(Nested Data Structure)
- 支持数据库异地复制部署
3文艺范:目前ClickHouse的限制很多,生来就是为小资服务的
- 目前只支持Ubuntu系统
- 不提供设计和架构文档,设计很神秘的样子,只有开源的C++源码
- 不理睬Hadoop生态,走自己的路
针对百T级别的实时数据,一些适合的数据库包括:
1 Apache Cassandra:Cassandra是一个开源的分布式NoSQL数据库,可以实现水平扩展,支持百T级别的数据存储和读取,并且具备高可用性和高性能。
2 Apache HBase:HBase是一个分布式的NoSQL数据库,特别适合存储大规模的结构化数据,并且可以提供实时读写 *** 作。它可以与Hadoop生态系统中的其他组件(如Hadoop、Hive和Pig)集成,支持海量数据的处理和分析。
3 MongoDB:MongoDB是一个基于文档的NoSQL数据库,支持高性能、高可用性和高扩展性,并且可以实现水平扩展。它还具有灵活的数据模型和强大的查询能力,适用于大规模的数据存储和处理。
4 Apache Druid:Druid是一个开源的分布式实时数据存储和查询系统,可以支持百T级别的数据存储和实时查询。它主要用于OLAP(在线分析处理)场景,可以提供快速的数据分析和查询功能。
需要注意的是,选择数据库时需要考虑到数据的类型、数据量、性能要求、数据一致性、容错性等因素,结合具体需求进行选择。
大数据的日益增长,给企业管理大量的数据带来了挑战的同时也带来了一些机遇。下面是用于信息化管理的大数据工具列表:
1ApacheHive
Hive是一个建立在hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
2JaspersoftBI套件
Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是一流的,许多企业已经使用它来将SQL表转化为pdf,,这使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。
31010data
1010data创立于2000年,是一个总部设在纽约的分析型云服务,旨在为华尔街的客户提供服务,甚至包括NYSEEuronext、 游戏 和电信的客户。它在设计上支持可伸缩性的大规模并行处理。它也有它自己的查询语言,支持SQL函数和广泛的查询类型,包括图和时间序列分析。这个私有云的方法减少了客户在基础设施管理和扩展方面的压力。
4Actian
Actian之前的名字叫做IngresCorp,它拥有超过一万客户而且正在扩增。它通过Vectorwise以及对ParAccel实现了扩展。这些发展分别导致了ActianVector和ActianMatrix的创建。它有Apache,Cloudera,Hortonworks以及其他发行版本可供选择。
5PentahoBusinessAnalytics
从某种意义上说,Pentaho与Jaspersoft相比起来,尽管Pentaho开始于报告生成引擎,但它目前通过简化新来源中获取信息的过程来支持大数据处理。Pentaho的工具可以连接到NoSQL数据库,例如MongoDB和Cassandra。PeterWayner指出,PentahoData(一个更有趣的图形编程界面工具)有很多内置模块,你可以把它们拖放到一个上,然后将它们连接起来。
6KarmasphereStudioandAnalyst
KarsmasphereStudio是一组构建在Eclipse上的插件,它是一个更易于创建和运行Hadoop任务的专用IDE。在配置一个Hadoop工作时,Karmasphere工具将引导您完成每个步骤并显示部分结果。当出现所有数据处于同一个Hadoop集群的情况时,KarmaspehereAnalyst旨在简化筛选的过程,。
7Cloudera
Cloudera正在努力为开源Hadoop,提供支持,同时将数据处理框架延伸到一个全面的“企业数据中心”范畴,这个数据中心可以作为首选目标和管理企业所有数据的中心点。Hadoop可以作为目标数据仓库,高效的数据平台,或现有数据仓库的ETL来源。企业规模可以用作集成Hadoop与传统数据仓库的基础。Cloudera致力于成为数据管理的“重心”。
8HPVerticaAnalyticsPlatformVersion7
HP提供了用于加载Hadoop软件发行版所需的参考硬件配置,因为它本身并没有自己的Hadoop版本。计算机行业领袖将其大数据平台架构命名为HAVEn(意为Hadoop,Autonomy,Vertica,EnterpriseSecurityand“n”applications)。惠普在Vertica7版本中增加了一个“FlexZone”,允许用户在定义数据库方案以及相关分析、报告之前 探索 大型数据集中的数据。这个版本通过使用HCatalog作为元数据存储,与Hadoop集成后为用户提供了一种 探索 HDFS数据表格视图的方法。
9TalendOpenStudio
Talend’s工具用于协助进行数据质量、数据集成和数据管理等方面工作。Talend是一个统一的平台,它通过提供一个统一的,跨企业边界生命周期管理的环境,使数据管理和应用更简单便捷。这种设计可以帮助企业构建灵活、高性能的企业架构,在次架构下,集成并启用百分之百开源服务的分布式应用程序变为可能。
10ApacheSpark
ApacheSpark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。
数据库是存放数据的仓库。它的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。
数据库是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念实际包括两层意思:
(1)数据库是一个实体,它是能够合理保管数据的“仓库”,用户在该“仓库”中存放要管理的事务数据,“数据”和“库”两个概念结合成为数据库。
(2)数据库是数据管理的新方法和技术,它能更合适的组织数据、更方便的维护数据、更严密的控制数据和更有效的利用数据。
发展现状
在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来, 几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同, 它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。 而传统的关系型数据库在一些传统领域依然保持了强大的生命力。
数据库管理系统
编辑
数据库管理系统是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能。数据库管理系统可以依据它所支持的数据库模型来作分类,例如关系式、XML;或依据所支持的计算机类型来作分类,例如服务器群集、移动电话;或依据所用查询语言来作分类,例如SQL、XQuery;或依据性能冲量重点来作分类,例如最大规模、最高运行速度;亦或其他的分类方式。不论使用哪种分类方式,一些DBMS能够跨类别,例如,同时支持多种查询语言。
以上就是关于如何看待yandex开源clickhouse这个列式文档数据库全部的内容,包括:如何看待yandex开源clickhouse这个列式文档数据库、百t级别实时数据使用什么数据库合适、大数据处理必备的十大工具!等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)