大数据的由来
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
1
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据的应用领域
大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。
安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。
大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
数据采集与预处理
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC
Logstash
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
Zookeeper
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
数据存储
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描 *** 作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求
数据查询分析
Hive
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL *** 作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来 *** 作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像 *** 作本地集合对象一样轻松地 *** 作分布式数据集。
Nutch
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过>
场景描述:一个Web应用,前端设置了8个具有相同配置的Tomcat服务器,跑在Nginx反向代理后。每个Tomcat服务器运行在一个虚拟机上,要求能对Tomcat服务器的访问日志汇总存储并提供一定的分析能力。
需要的开源软件:Logstash和Elasticsearch。通过在各个虚拟机上安装Logstash收集Tomcat的日志数据,并存储在Elasticsearch中达到日志集中收集和分析的目的。
过程有两个步骤:
一、配置Tomcat的日志存储格式。编辑Tomcat目录下serverxml,填写如下内容
<Host name="localhost" appBase="webapps"
unpackWARs="true" autoDeploy="true">
<!-- Access log processes all example
Documentation at: /docs/config/valvehtml
Note: The pattern used is equivalent to using pattern="common" -->
<Valve className="orgapachecatalinavalvesAccessLogValve" directory="logs" prefix="localhost_access_log" suffix="txt" pattern="%h %l %u %t "%r" %s %b %D "%{Referer}i" "%{User-Agent}i"" />
</Host>
directory表示访问日志存储在Tomcat的logs目录中。
prefix表示日志文件名以localhost_access_log开头。
suffix表示日志文件名以txt截尾。
pattern="%h %l %u %t "%r" %s %b %D "%{Referer}i" "%{User-Agent}i""
pattern这一句非常重要,用于表示日志的存储格式,一般为了方便会使用common或者combined,这两种自定义格式已经可以记录足够详细的信息,我这里使用了自定义方式。在这个pattern描述里:
%h表示访问来源的主机名或者IP地址;
%l表示客户端的标示,通常是 -;
%u表示得到了授权的访问者标示,通常都是 -;
%t表示日志事件的发生时间戳,用 [ 和 ] 括起来的;
"%r"表示用双引号"括起来的访问命令和链接,比如“GET /resource/logopng”;
%s表示>
%b是服务器返回的数据量,以字节为单位;
%D表示服务器的响应时间,可以用于分析页面的执行效率;
"%{Referer}i"表示用两个双引号括起来的网址,用于告诉服务器这个访问请求是从哪个页面链接过来的;
"%{User-Agent}i"表示用双引号括起来的浏览器的>
二、配置Logstash
1、在每个虚拟机上传logstash安装文件,安装logstash,以222版本为例
rpm -ivh logstash-222-1noarchrpm
2、创建Logstash的工作目录
mkdir /root/logstash_work_dir;mkdir /root/logstash_work_dir/config;mkdir /root/logstash_work_dir/logs;mkdir /root/logstash_work_dir/pid
其中/root/logstash_work_dir是工作目录,config目录用于存储Logstash的配置文件,logs目录用于存储Logstash的日志数据,pid目录用于存储Logstash的pid文件。
3、设置Logstash的运行脚本,修改/etc/initd/logstash中,替换其中的代码如下
LS_WORK_DIR=/root/logstash_work_dir
name=logstash
LS_USER=root
LS_GROUP=root
LS_HOME=/var/lib/logstash
LS_HEAP_SIZE="1g"
pidfile=${LS_WORK_DIR}/pid/$namepid
LS_LOG_DIR=${LS_WORK_DIR}/logs
LS_LOG_FILE=${LS_WORK_DIR}/logs/$namelog
LS_CONF_DIR=${LS_WORK_DIR}/config/root_tomcatconf
LS_OPEN_FILES=16384
LS_NICE=19
LS_OPTS=""
LS_USER和LS_GROUP指定了Logstash进程运行时的用户名和组,我这里使用了root,也可以使用其他权限更低的一般用户和组。
LS_CONF_DIR=${LS_WORK_DIR}/config/root_tomcatconf这一句最重要,指定了Logstash服务运行时的配置文件路径。
4、在/root/logstash_work_dir/config/目录中编写Logstash的配置文件root_tomcatconf,这是本系统最重要的文件。
input {
file {
path => "/root/tomcat/logs/localhost_access_logtxt"
sincedb_path => "/root/logstash_work_dir/config/sincedb_apache_access_logtxt"
type => "apache_access_log"
add_field => {"tomcatip" => "101281861"}
}
}
filter{
if [type] == "apache_access_log" {
grok{
match => { "message" => "%{IPORHOST:clientip} %{USER:ident} %{USER:auth} \[%{>
}
date{
match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ]
target => ["writetime"]
}
mutate {
convert => {
"response" => "integer"
"bytes" => "integer"
"responsetime" => "integer"
}
}
}
}
output {
if [type] == "apache_access_log" {
elasticsearch {
hosts => ["101281874:9200","101281875:9200","101281877:9200"]
index => "logstash-apacheaccesslog-%{+YYYYMMdd}"
}
}
}
Logstash的配置文件包括input、filter和output三部分。
input部分,使用了file插件。path指定了Logstash扫描的文件,每当有文件变化时,Logstash会读取文件尾部新增的数据;sincedb_path用于存储上一次文件读取的位置信息,如果这个文件不存在,则会从日志文件首部获取所有数据;type用于对这个配置插件做标识,当一个配置文件中有多个数据收集任务时尤其有用;add_field用于标识本机的ip地址,当数据存储在Elasticsearch后,用于区分来自哪一个Tomcat服务器。
filter插件,使用了grok、date和mutate三个插件。
grok插件用于解析Tomcat的访问日志,logstash自带了COMBINEDAPACHELOG等多个配置模式,但由于我使用了自定义的Tomcat日志配置,这里也自己编写;
date部分用于从日志中提取时间戳信息;
mutate中用convert将response、byte和responsetime三个解析得到的字符串转化为整数integer类型,这个步骤对于后续的分析比较重要,因为这样可以在Elasticsearch中做数值比较运算。
output插件,使用了elasticsearch插件,其中hosts指定了Elasticsearch集群的地址,本例子中指定了三个实例;index指定了数据存储在Elasticsearch中的索引名字,以logstash作为开头是因为Logstash自带的针对ELasticsearch的mapping映射中,对于所有的字符串类型都附带设置了一个raw不做解析的设置,这样便于在Elasticsearch中做底层的文本检索。
5、设置chkconfig的启动命令
chkconfig --add logstash
6、启动Logstash服务
service logstash start
1、logstash本身不是使用java实现的。
2、logstash支持异构,跨语言传输可以通过插件或中间件的方式进行,比如可以使用jdbc-xxxjar链接数据库,通过kafka获取数据等。
以上就是关于大数据三大核心技术:拿数据、算数据、卖数据!全部的内容,包括:大数据三大核心技术:拿数据、算数据、卖数据!、大数据数据采集工具简介、logstash怎么收集tomcat日志等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)