数据库建立索引怎么利用索引查询

数据库建立索引怎么利用索引查询,第1张

1合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。

索引的使用要恰到好处,其使用原则如下:

在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。

在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而 使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量 数据后,删除并重建索引可以提高查询速度。

(1)在下面两条select语句中:

SELECT FROM table1 WHERE field1<=10000 AND field1>=0;

SELECT FROM table1 WHERE field1>=0 AND field1<=10000;

如果数据表中的数据field1都>=0,则第一条select语句要比第二条select语句效率高的多,因为第二条select语句的第一个条件耗费了大量的系统资源。

第一个原则:在where子句中应把最具限制性的条件放在最前面。

(2)在下面的select语句中:

SELECT FROM tab WHERE a=… AND b=… AND c=…;

若有索引index(a,b,c),则where子句中字段的顺序应和索引中字段顺序一致。

第二个原则:where子句中字段的顺序应和索引中字段顺序一致。

——————————————————————————

以下假设在field1上有唯一索引I1,在field2上有非唯一索引I2。

——————————————————————————

(3) SELECT field3,field4 FROM tb WHERE field1='sdf' 快

SELECT FROM tb WHERE field1='sdf' 慢[/cci]

因为后者在索引扫描后要多一步ROWID表访问。

(4) SELECT field3,field4 FROM tb WHERE field1>='sdf' 快

SELECT field3,field4 FROM tb WHERE field1>'sdf' 慢

因为前者可以迅速定位索引。

(5) SELECT field3,field4 FROM tb WHERE field2 LIKE 'R%' 快

SELECT field3,field4 FROM tb WHERE field2 LIKE '%R' 慢,

因为后者不使用索引。

(6) 使用函数如:

SELECT field3,field4 FROM tb WHERE upper(field2)='RMN'不使用索引。

如果一个表有两万条记录,建议不使用函数;如果一个表有五万条以上记录,严格禁止使用函数!两万条记录以下没有限制。

(7) 空值不在索引中存储,所以

SELECT field3,field4 FROM tb WHERE field2 IS[NOT] NULL不使用索引。

(8) 不等式如

SELECT field3,field4 FROM tb WHERE field2!='TOM'不使用索引。

相似地,

SELECT field3,field4 FROM tb WHERE field2 NOT IN('M','P')不使用索引。

(9) 多列索引,只有当查询中索引首列被用于条件时,索引才能被使用。

(10) MAX,MIN等函数,使用索引。

SELECT max(field2) FROM tb 所以,如果需要对字段取max,min,sum等,应该加索引。

一次只使用一个聚集函数,如:

SELECT “min”=min(field1), “max”=max(field1) FROM tb

不如:SELECT “min”=(SELECT min(field1) FROM tb) , “max”=(SELECT max(field1) FROM tb)

(11) 重复值过多的索引不会被查询优化器使用。而且因为建了索引,修改该字段值时还要修改索引,所以更新该字段的 *** 作比没有索引更慢。

(12) 索引值过大(如在一个char(40)的字段上建索引),会造成大量的I/O开销(甚至会超过表扫描的I/O开销)。因此,尽量使用整数索引。 Sp_estspace可以计算表和索引的开销。

(13) 对于多列索引,ORDER BY的顺序必须和索引的字段顺序一致。

(14) 在sybase中,如果ORDER BY的字段组成一个簇索引,那么无须做ORDER BY。记录的排列顺序是与簇索引一致的。

(15) 多表联结(具体查询方案需要通过测试得到)

where子句中限定条件尽量使用相关联的字段,且尽量把相关联的字段放在前面。

SELECT afield1,bfield2 FROM a,b WHERE afield3=bfield3

field3上没有索引的情况下:

对a作全表扫描,结果排序

对b作全表扫描,结果排序

结果合并。

对于很小的表或巨大的表比较合适。

field3上有索引

按照表联结的次序,b为驱动表,a为被驱动表

对b作全表扫描

对a作索引范围扫描

如果匹配,通过a的rowid访问

(16) 避免一对多的join。如:

SELECT tb1field3,tb1field4,tb2field2 FROM tb1,tb2 WHERE tb1field2=tb2field2 AND tb1field2=‘BU1032’ AND tb2field2= ‘aaa’

不如:

declare @a varchar(80)

SELECT @a=field2 FROM tb2 WHERE field2=‘aaa’

SELECT tb1field3,tb1field4,@a FROM tb1 WHERE field2= ‘aaa’

(16) 子查询

用exists/not exists代替in/not in *** 作

比较:

SELECT afield1 FROM a WHERE afield2 IN(SELECT bfield1 FROM b WHERE bfield2=100)

SELECT afield1 FROM a WHERE EXISTS( SELECT 1 FROM b WHERE afield2=bfield1 AND bfield2=100)

SELECT field1 FROM a WHERE field1 NOT IN( SELECT field2 FROM b)

SELECT field1 FROM a WHERE NOT EXISTS( SELECT 1 FROM b WHERE bfield2=afield1)

(17) 主、外键主要用于数据约束,sybase中创建主键时会自动创建索引,外键与索引无关,提高性能必须再建索引。

(18) char类型的字段不建索引比int类型的字段不建索引更糟糕。建索引后性能只稍差一点。

(19) 使用count()而不要使用count(column_name),避免使用count(DISTINCT column_name)。

(20) 等号右边尽量不要使用字段名,如:

SELECT FROM tb WHERE field1 = field3

(21) 避免使用or条件,因为or不使用索引。

2避免使用order by和group by字句。

因为使用这两个子句会占用大量的临时空间(tempspace),如果一定要使用,可用视图、人工生成临时表的方法来代替。

如果必须使用,先检查memory、tempdb的大小。

测试证明,特别要避免一个查询里既使用join又使用group by,速度会非常慢!

3尽量少用子查询,特别是相关子查询。因为这样会导致效率下降。

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

4.消除对大型表行数据的顺序存取

在 嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。

比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询 10亿行数据。

避免这种情况的主要方法就是对连接的列进行索引。

例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个 表要做连接,就要在“学号”这个连接字段上建立索引。

还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。

下面的查询将强迫对orders表执行顺序 *** 作:

SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008

虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

SELECT * FROM orders WHERE customer_num=104 AND order_num>1001

UNION

SELECT * FROM orders WHERE order_num=1008

这样就能利用索引路径处理查询。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:

SELECT custname,rcvblesbalance,……other COLUMNS

FROM cust,rcvbles

WHERE custcustomer_id = rcvlbescustomer_id

AND rcvbllsbalance>0

AND custpostcode>“98000”

ORDER BY custname

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:

SELECT custname,rcvblesbalance,……other COLUMNS

FROM cust,rcvbles

WHERE custcustomer_id = rcvlbescustomer_id

AND rcvbllsbalance>;0

ORDER BY custname

INTO TEMP cust_with_balance

然后以下面的方式在临时表中查询:

SELECT * FROM cust_with_balance

WHERE postcode>“98000”

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。

索引有三种类型:

唯一索引:唯一索引是不允许其中任何两行具有相同索引值的索引。当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。

主键索引:数据库表经常有一列或多列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。

聚焦索引:在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。

扩展资料:

通过建立索引可以极大地提高在数据库中获取所需信息的速度,同时还能提高服务器处理相关搜索请求的效率,从这个方面来看它具有以下优点:

在设计数据库时,通过创建一个惟一的索引,能够在索引和信息之间形成一对一的映射式的对应关系,增加数据的惟一性特点。

能提高数据的搜索及检索速度,符合数据库建立的初衷。

能够加快表与表之间的连接速度,这对于提高数据的参考完整性方面具有重要作用。

在信息检索过程中,若使用分组及排序子句进行时,通过建立索引能有效的减少检索过程中所需的分组及排序时间,提高检索效率。

建立索引之后,在信息查询过程中可以使用优化隐藏器,这对于提高整个信息检索系统的性能具有重要意义。

参考资料:

百度百科_索引

SQL语句:

CREATE INDEX indexname

ON Student(name ASC)

注释:

# indexname是索引的名字,你可以换成容易记忆容易理解的名字;

# Student 是表名,name 是姓名的字段名;

# ASC 升序,DESC 降序。

1

索引名称就是起一个识别的作用。

一般使用

时不会用的,但是如果你需要

删除的时候

drop

index

索引名;

此时没有索引名,就有点麻烦。

2

sql语句

是根据查询优化器自动确定是否使用索引、使用哪个索引的。

这个和你的语法、数据的情况等等都有关。

索引就是加快检索表中数据的方法。数据库的索引类似于书籍的索引。在书籍中,索引允许用户不必翻阅完整个书就能迅速地找到所需要的信息。在数据库中,索引也允许数据库程序迅速地找到表中的数据,而不必扫描整个数据库。

数据库中索引的优缺点

为什么要创建索引呢这是因为,创建索引可以大大提高系统的性能。第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。

第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢这种想法固然有其合理性,然而也有其片面性。虽然,索引有许多优点,但是,为表中的每一个列都增加索引,是非常不明智的。这是因为,增加索引也有许多不利的一个方面。

第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引,

例如:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。

同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text,

image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。按照索引列的个数,可以将索引划分为单列索引和符合索引;

按照索引列值的唯一性,可以将索引分为唯一索引和非唯一索引。

Create [unique] index 索引名 on 表名(一个或多个索引列名并用“,”隔开)

优点:查询大量数据时,可以提高查询效率。

缺点:不维护空值,占用一定的资源,插入和更新数据时,影响效率。

优点:数据库系统是用来管理数据的,建立的数理逻辑和集合 *** 作基础上的。

具有高效、可靠、完整、自同步等特性,是业务系统进行数据控制的最佳选择。

数据库系统一般提供高效的数据控制和数据检索功能,采用SQL语言来进行数据 *** 作。

目前市面上流行的数据库系统很多:较小型的数据库系统有:mysql,MSSQL_SERVER等等,适用于企业级的大型数据库有:ORACEL,DB2(IBM),INFORMIX(IBM)等等

缺点:安全性不够,加了用户级密码容易破解

C/S 结构下对服务器要求很高,否则容易造成 MDB 损坏并发数255。

但是对高强度 *** 作适应性差,如果服务器不够好,网络不够好,编程的方法不够好,6-7个人同时访问就能导致 MDB 损坏或者并死不能将 VBA 代码开发的软件系统直接编译成 EXE 可执行文件。

不能脱离 ACCESS 或者 ACCESS RUNTIME 环境,该环境相对其他软件体积较大(50M左右)

数据库索引是一种专用数据结构,允许我们快速定位信息。它的组织方式类似于二叉树结构,左侧值较小,右侧值较大。索引可以比较树状结构中的行值,以更快地定位所需数据,而不是强制扫描整个表。

当我们在一个或多个列上创建索引时,我们将它们的值存储在新结构中,还存储指行的指针。这行为会重新组织并排序信息,但不会改变信息本身。可以将数据库索引视为书后面的索引。虽然它存储了一些实际信息,但它还包含指针,指针指向可以找到更多详细信息的位置。

按照我们的搜索条件对数据进行排序后,查找所需的记录会变得更加简单。想象一下按字母顺序排序的旧电话簿。知道某人的姓氏,名字和地址意味着您可以很快找到他们的电话号码。但是如果你只知道别人的地址和名字怎么办?没有姓氏,找到电话号码将非常困难。您可以使用反向电话簿做得更好,该目录列出了基于地址的电话号码。

在数据库中,更改搜索条件通常意味着为属性组合创建新索引。如前所述,添加这些索引需要额外的磁盘空间。添加,删除或更新值时,还会对索引进行更改。

以上就是关于数据库建立索引怎么利用索引查询全部的内容,包括:数据库建立索引怎么利用索引查询、什么是索引索引类型有几种,各有什么特点、数据库创建索引,为学生表student创建姓名索引,按升序排列等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9374440.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存