ORACLE数据库性能优化概述

ORACLE数据库性能优化概述,第1张

实际上 为了保证ORACLE数据库运行在最佳的性能状态下 在信息系统开发之前就应该考虑数据库的优化策略 优化策略一般包括服务器 *** 作系统参数调整 ORACLE数据库参数调整 网络性能调整 应用程序SQL语句分析及设计等几个方面 其中应用程序的分析与设计是在信息系统开发之前完成的

分析评价ORACLE数据库性能主要有数据库吞吐量 数据库用户响应时间两项指标 数据库吞吐量是指单位时间内数据库完成的SQL语句数目 数据库用户响应时间是指用户从提交SQL语句开始到获得结果的那一段时间 数据库用户响应时间又可以分为系统服务时间和用户等待时间两项 即

数据库用户响应时间=系统服务时间 + 用户等待时间

上述公式告诉我们 获得满意的用户响应时间有两个途径 一是减少系统服务时间 即提高数据库的吞吐量 二是减少用户等待时间 即减少用户访问同一数据库资源的冲突率

性能优化包括如下几个部分

ORACLE数据库性能优化之一 调整数据结构的设计

这一部分在开发信息系统之前完成 程序员需要考虑是否使用ORACLE数据库的分区功能 对于经常访问的数据库表是否需要建立索引等

ORACLE数据库性能优化之二 调整应用程序结构设计

这一部分也是在开发信息系统之前完成 程序员在这一步需要考虑应用程序使用什么样的体系结构 是使用传统的Client/Server两层体系结构 还是使用Browser/Web/Database的三层体系结构 不同的应用程序体系结构要求的数据库资源是不同的

ORACLE数据库性能优化之三 调整数据库SQL语句

应用程序的执行最终将归结为数据库中的SQL语句执行 因此SQL语句的执行效率最终决定了ORACLE数据库的性能 ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row level manager)来调整优化SQL语句

ORACLE数据库性能优化之四 调整服务器内存分配

内存分配是在信息系统运行过程中优化配置的 数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区 日志缓冲区和共享池的大小 还可以调整程序全局区(PGA区)的大小 需要注意的是 SGA区不是越大越好 SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换 这样反而会降低系统

ORACLE数据库性能优化之五 调整硬盘I/O 这一步是在信息系统开发之前完成的

数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上 做到硬盘之间I/O负载均衡

ORACLE数据库性能优化之六 调整 *** 作系统参数

例如 运行在UNIX *** 作系统上的ORACLE数据库 可以调整UNIX数据缓冲池的大小 每个进程所能使用的内存大小等参数

lishixinzhi/Article/program/Oracle/201311/17687

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select from t1 where f1 = 20;

B:

select from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 80 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (000 sec)

表记录数:

mysql> select count() from t1;+----------+| count() |+----------+|    32768 |+----------+1 row in set (001 sec)

这里我们两条经典的SQL:

SQL C:

select from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为324365。

mysql> explain  format=json select from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "324365"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "036",      "cost_info": {        "read_cost": "323207",        "eval_cost": "1158",        "prefix_cost": "324365",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为44109,明显比之前的快了好几倍。

mysql> explain  format=json select /+ index_merge(t1) / from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "44109"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "10000",      "cost_info": {        "read_cost": "33079",        "eval_cost": "11030",        "prefix_cost": "44109",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))"    }  }}1 row in set, 1 warning (000 sec)

我们再看下SQL D的计划:

不加HINT,

mysql> explain format=json select from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "53434"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "007",      "cost_info": {        "read_cost": "47884",        "eval_cost": "004",        "prefix_cost": "53434",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100))"    }  }}1 row in set, 1 warning (000 sec)

加了HINT,

mysql> explain format=json select /+ index_merge(t1)/ from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "523"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "10000",      "cost_info": {        "read_cost": "513",        "eval_cost": "010",        "prefix_cost": "523",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100) and (`ytt``t1``rank1` = 100))"    }  }}1 row in set, 1 warning (000 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

1、选取最适用的字段属性

MySQL 可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。

另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。

对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。

2、使用连接(JOIN)来代替子查询(Sub-Queries)

MySQL 从41开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示:

DELETE FROM customerinfo

WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL *** 作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询可以被更有效率的连接(JOIN) 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:

SELECT FROM customerinfo

WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

如果使用连接(JOIN) 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:

SELECT FROM customerinfo

LEFT JOIN salesinfoON customerinfoCustomerID=salesinfo

CustomerID

WHERE salesinfoCustomerID IS NULL

连接(JOIN) 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

3、使用联合(UNION)来代替手动创建的临时表

MySQL 从 40 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。

SELECT Name, Phone FROM client

UNION

SELECT Name, BirthDate FROM author

UNION

SELECT Name, Supplier FROM product

4、事务

尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库 *** 作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的 *** 作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的 *** 作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都 *** 作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL *** 作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。

BEGIN;

INSERT INTO salesinfo SET CustomerID=14;

UPDATE inventory SET Quantity=11

WHERE item='book';

COMMIT;

事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的 *** 作不被其它的用户所干扰。

5、锁定表

尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户

来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。

其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。

LOCK TABLE inventory WRITE

SELECT Quantity FROM inventory

WHEREItem='book';

UPDATE inventory SET Quantity=11

WHEREItem='book';

UNLOCK TABLES

这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的 *** 作。

6、使用外键

锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。例如,外键可以保证每一条销售记录都指向某一个存在的客户。在这里,外键可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一条没有合法CustomerID的记录都不会被更新或插入到 salesinfo中。

CREATE TABLE customerinfo

(

CustomerID INT NOT NULL ,

PRIMARY KEY ( CustomerID )

) TYPE = INNODB;

CREATE TABLE salesinfo

(

SalesID INT NOT NULL,

CustomerID INT NOT NULL,

PRIMARY KEY(CustomerID, SalesID),

FOREIGN KEY (CustomerID) REFERENCES customerinfo

(CustomerID) ON DELETECASCADE

) TYPE = INNODB;

注意例子中的参数“ON DELETE CASCADE”。该参数保证当 customerinfo 表中的一条客户记录被删除的时候,salesinfo 表中所有与该客户相关的记录也会被自动删除。如果要在 MySQL 中使用外键,一定要记住在创建表的时候将表的类型定义为事务安全表 InnoDB类型。该类型不是 MySQL 表的默认类型。定义的方法是在 CREATE TABLE 语句中加上 TYPE=INNODB。如例中所示。

7、使用索引

索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(), MIN()和ORDERBY这些命令的时候,性能提高更为明显。那该对哪些字段建立索引呢?一般说来,索引应建立在那些将用于JOIN, WHERE判断和ORDER BY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。对于一个ENUM类型的字段来说,出现大量重复值是很有可能的情况,例如 customerinfo中的“province” 字段,在这样的字段上建立索引将不会有什么帮助;相反,还有可能降低数据库的性能。我们在创建表的时候可以同时创建合适的索引,也可以使用ALTER TABLE或CREATE INDEX在以后创建索引。此外,MySQL

从版本32323开始支持全文索引和搜索。全文索引在 MySQL 中是一个FULLTEXT类型索引,但仅能用于MyISAM 类型的表。对于一个大的数据库,将数据装载到一个没有FULLTEXT索引的表中,然后再使用ALTER TABLE或CREATE INDEX创建索引,将是非常快的。但如果将数据装载到一个已经有FULLTEXT索引的表中,执行过程将会非常慢。

8、优化的查询语句

绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。下面是应该注意的几个方面。首先,最好是在相同类型的字段间进行比较的 *** 作。在MySQL 323版之前,这甚至是一个必须的条件。例如不能将一个建有索引的INT字段和BIGINT字段进行比较;但是作为特殊的情况,在CHAR类型的字段和 VARCHAR类型字段的字段大小相同的时候,可以将它们进行比较。其次,在建有索引的字段上尽量不要使用函数进行 *** 作。

例如,在一个DATE类型的字段上使用YEAE()函数时,将会使索引不能发挥应有的作用。所以,下面的两个查询虽然返回的结果一样,但后者要比前者快得多。

SELECT FROM order WHERE YEAR(OrderDate)<2001;

SELECT FROM order WHERE OrderDate<"2001-01-01";

同样的情形也会发生在对数值型字段进行计算的时候:

SELECT FROM inventory WHERE Amount/7<24;

SELECT FROM inventory WHERE Amount<247;

上面的两个查询也是返回相同的结果,但后面的查询将比前面的一个快很多。第三,在搜索字符型字段时,我们有时会使用 LIKE 关键字和通配符,这种做法虽然简单,但却也是以牺牲系统性能为代价的。例如下面的查询将会比较表中的每一条记录。

SELECT FROM books

WHERE name like "MySQL%"

但是如果换用下面的查询,返回的结果一样,但速度就要快上很多:

SELECT FROM books

WHERE name>="MySQL"and name<"MySQM"

最后,应该注意避免在查询中让MySQL进行自动类型转换,因为转换过程也会使索引变得不起作用。

包括网络、硬件、 *** 作系统、数据库参数和应用程序。

数据库的优化通常可以通过对网络、硬件、 *** 作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。

根据统计,对网络、硬件、 *** 作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。

扩展资料

数据库性能优化法则归纳为5个层次:

1、  减少数据访问(减少磁盘访问)

2、  返回更少数据(减少网络传输或磁盘访问)

3、  减少交互次数(减少网络传输)

4、  减少服务器CPU开销(减少CPU及内存开销)

5、  利用更多资源(增加资源)

由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。

任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。

参考资料来源:百度百科--数据库系统优化

数据库查询 *** 作在各种数据库 *** 作中所占据的比重最大,而查询 *** 作所基于的select语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定程度,比如一个银行的账户数据库表信息积累到上百万甚至上千条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。

以上就是关于ORACLE数据库性能优化概述全部的内容,包括:ORACLE数据库性能优化概述、mysql数据库怎么优化,有几方面的优化、mysql最好的优化技巧等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9379073.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存