而数据仓库则是重点关注数据与数据之间的业务含义,如不同统计口径与分析方式下数值差的意义。简单说是为了分析。
那么为了保证分析结果的准确和有效,必须分解和细化分析口径,精确定位影响因素,维表和度量值就是定义分析角度和影响因素的一种方式。
数据量没达到一定程度,且业务需求不需要,例如:新闻主题表,几百G正常,就可能不必要拆分,但是像新浪这样的公司就必须要拆分。换句话而言就是要看数据量、业务发展趋势、数据的存取需求、数据访问的并发度等综合而考虑;大数据量、高并发等场景,准确说应该一般是:垂直拆分+水平拆分,肯定是提供性能、系统负载能力、支持业务增量等。
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
拓展资料:数据仓库的出现,并不是要取代数据库。数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。
目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
5.2.2.1 数据库
根据该系统的开发需求,按照数据库的功能和作用将其分为风险查询类、风险评价类、系统管理类三大类(萨师煊等,2000)。主要数据见表5.5。
表5.5 海外油气与金属矿产资源开发风险管理系统的主要数据表
续表
5.2.2.2 数据仓库
油价数据来源于美国能源部(DOE)下属的能源信息署(EIA)网站、中石油(CNPC)网站和《华尔街日报》(WSJ)网站提供的油价数据,油价序列本身就是一个不规则的时间序列,油价数据具有以下几个特点。
(1)数据的一致性差
油价数据格式多样,存在数据冗余,主要体现在:使用的数据格式均不相同,并且各个子系统相对独立。在网站单独作用的情况下,一般都没有问题,但要将这些不同系统或不同时期的数据集中起来综合利用,就可能出现数据不齐全、不一致或重复的现象。
(2)数据存放的分散
油价数据来源多,缺乏统一管理,没有一种相应的网页数据自动化抓取 *** 作实现数据的本地化 *** 作过程。
(3)数据资源开发不充分
大容量数据导致对数据资源的开发利用不充分,缺乏对获取的数据如各分析机构制定的期货合约元数据进行各种深层次分析、综合、提炼、挖掘和展现的应用,因此很难对丰富的统计数据资源进行二次开发利用。
根据油价数据中所包含的油气产品种类、油气产品合约制定日期、油气产品的价格类型、不同市场下油气产品价格的差异等,能够加深对油价走势的了解。油价的这种与时间相关性、不可修改性,以及集成的性质,使得我们采用多种角度对原始数据进行理解,并真实反映其特性,也让我们发现使用一种整合的技术对油价进行精确预测十分必要。
数据仓库的构建流程如图5.13所示由下至上逐步实现。
图5.13 数据仓库构建流程
1)数据源。
A.数据源的复杂性。数据分散在数据库管理系统、电子表格、电子邮件系统、电子文档甚至纸上。系统中要求采集的3个数据源中,EIA 网站存储在网页上的油价相关事件更新较慢,虽然提供了各市场日、周、月、年的油价数据下载,但是下载完成之后的表格字段格式时常发生变化,这为实现自动获取数据并下载到本地自动入库的要求增加了难度;中石油网站数据除上述只显示3条数据之外,网站上会将访问流量过大的IP地址列入黑名单使其不能继续下载到本地进行保存,为这些数据建立统一的模型将会耗费很大精力。
B.数据的有效性。由于存在经验局限,如何处理数据的空值、不同时间间隔时间字段格式,入库时应注意的问题等,如果应用程序没有检验数据的有效性,会对数据多维显示产生极大影响,因此也归结为数据源数据质量问题。
C.数据的完整性。数据源上的数据并不那么明显或者容易获得。油价是高度敏感的数据,因此各个网站虽然提供了各个油品交易市场的日、月或年数据,但是完整性并不能充分保证,根据企业政策的不同,有时对要获得的数据,需花费大量精力。为此,要对不同的数据源进行建库,以保证所获数据的完整性。
2)数据处理。
高效的多维数据集展示离不开底层数据源数据的精确获取,或者叫做数据理解和数据清洗。于是系统在基于元数据获取、加工、入库和多维数据集展示上实现预期的要求。
A.ETL。该功能是整个油价数据仓库的核心之一,主要功能是按照事先定义的数据表对应关系从相关系统表中抽取数据(Extraction),经过数据清洗和转换(Transform),最终把正确的数据装载到数据仓库的源数据中(Load),作为以后应用的基础。
B.数据转换。该功能是在数据抽取过程中按照定义的规则转换数据,避免了数据在分析时的多样性,保证数据一致性。
C.数据集成。该功能主要是把油价信息数据仓库系统的源数据,按照事先定义的计算逻辑以主题的方式重新整合数据,并以新的数据结构形式存储。
3)数据存储。
星型模型(星型架构)是数据仓库开发中多维展现重要的逻辑结构,构成星型模型的几个重要特征是:维、度和属性,在实际应用中表示为事实表和维度表。在油价数据中,各市场的期现货价格表为数据仓库的事实表,油品类型、合约规定日期等为维度表。
油价数据仓库星型模型的设计方案如下:
A.事实表。数据库表中EIA的期现货价格表(包括日、周、月、年表)作为数据仓库中的事实表,根据不同时间维度构成多个星型模型,即星座模型。这些价格表中以市场编号、油气产品类型、期货合约日期、价格单位度量衡编号作为主键和外键与其他维度表相连,形成多维展示联动的基础,以油价数据和其他事实数据为记录数据,作为主要输出结果。
B.维度表。根据市场、油品、价格数据、度量衡和事件类型作为油气数据仓库中多维分析的角度和目标。
图5.14以EIA的日期货数据表作事实表为例,构建星型模型,其他不同时间维度的模型结构图与此图基本相同。
图5.14 以EIA数据为例的日期货价格星型模型
以星型模型设计为基础,完善数据存储中 *** 作型数据存储(ODS)的原型设计,提供DB-DW之间中间层的数据环境,可实现 *** 作型数据整合和各个系统之间的数据交换。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)