兄弟命令show processlist只列出前100条,如果想全列出请使用show full processlist
先 简单说一下各列的含义和用途:
正在将表中修改的数据刷新到磁盘中,同时正在关闭已经用完的表。这是一个很快的 *** 作,如果不是这样的话,就应该确认磁盘空间是否已经满了或者磁盘是否正处于重负中。
Connect Out
复制从服务器正在连接主服务器。
Copying to tmp table on disk
由于临时结果集大于 tmp_table_size,正在将临时表从内存存储转为磁盘存储以此节省内存。
Creating tmp table
正在创建临时表以存放部分查询结果。
deleting from main table
服务器正在执行多表删除中的第一部分,刚删除第一个表。
deleting from reference tables
服务器正在执行多表删除中的第二部分,正在删除其他表的记录。
Flushing tables
正在执行 FLUSH TABLES,等待其他线程关闭数据表。
Killed
发送了一个kill请求给某线程,那么这个线程将会检查kill标志位,同时会放弃下一个kill请求。MySQL会在每次的主循环中检查kill标志 位,不过有些情况下该线程可能会过一小段才能死掉。如果该线程程被其他线程锁住了,那么kill请求会在锁释放时马上生效。
Locked
被其他查询锁住了。
Sending data
正在处理 SELECT 查询的记录,同时正在把结果发送给客户端。
Sorting for group
正在为 GROUP BY 做排序。
Sorting for order
正在为 ORDER BY 做排序。
Opening tables
这个过程应该会很快,除非受到其他因素的干扰。例如,在执 ALTER TABLE 或 LOCK TABLE 语句行完以前,数据表无法被其他线程打开。 正尝试打开一个表。
Removing duplicates
正在执行一个 SELECT DISTINCT 方式的查询,但是MySQL无法在前一个阶段优化掉那些重复的记录。因此,MySQL需要再次去掉重复的记录,然后再把结果发送给客户端。
Reopen table
获得了对一个表的锁,但是必须在表结构修改之后才能获得这个锁。已经释放锁,关闭数据表,正尝试重新打开数据表。
Repair by sorting
修复指令正在排序以创建索引。
Repair with keycache
修复指令正在利用索引缓存一个一个地创建新索引。它会比 Repair by sorting 慢些。
Searching rows for update
正在讲符合条件的记录找出来以备更新。它必须在 UPDATE 要修改相关的记录之前就完成了。
Sleeping
正在等待客户端发送新请求.
System lock
正在等待取得一个外部的系统锁。如果当前没有运行多个 mysqld 服务器同时请求同一个表,那么可以通过增加 --skip-external-locking参数来禁止外部系统锁。
U pgrading lock
INSERT DELAYED 正在尝试取得一个锁表以插入新记录。
Updating
正在搜索匹配的记录,并且修改它们。
User Lock
正在等待 GET_LOCK()。
Waiting for tables
该线程得到通知,数据表结构已经被修改了,需要重新打开数据表以取得新的结构。然后,为了能的重新打开数据表,必须等到所有其他线程关闭这个表。以下几种 情况下会产生这个通知:FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE, 或 OPTIMIZE TABLE。
waiting for handler insert
INSERT DELAYED 已经处理完了所有待处理的插入 *** 作,正在等待新的请求。
大部分状态对应很快的 *** 作,只要有一个线程保持同一个状态好几秒钟,那么可能是有问题发生了,需要检查一下。
还有其他的状态没在上面中列出来,不过它们大部分只是在查看服务器是否有存在错误是才用得着。
文章转自: http://blog.csdn.net/gumanren/article/details/4658385
开APPMysql数据库高CPU问题定位和优化 原创
2020-05-30 19:33:37
5点赞
yw804909465
码龄11年
关注
本课程的主旨及目标
•导致mysql数据库CPU高的常见原因
•常见定位问题的方法
•一般定位步骤
•数据库注意事项
导致mysql数据库CPU高的常见原因
占用CPU过高,可以做如下考虑:
1)一般来讲,排除高并发的因素,还是要找到导致你CPU过高的哪几条在执行的SQL,show processlist语句,查找负荷最重的SQL语句,优化该SQL,比如适当建立某字段的索引;
2)打开慢查询日志,将那些执行时间过长且占用资源过多的SQL拿来进行explain分析,导致CPU过高,多数是GroupBy、OrderBy排序问题所导致,然后慢慢进行优化改进。比如优化insert语句、优化group by语句、优化order by语句、优化join语句等等;
3)考虑定时优化文件及索引;
4)定期分析表,使用optimize table;
5)优化数据库对象;
6)考虑是否是锁问题;
7)调整一些MySQL Server参数,比如key_buffer_size、table_cache、innodb_buffer_pool_size、innodb_log_file_size等等;
8)如果数据量过大,可以考虑使用MySQL集群或者搭建高可用环境。
9)可能由于内存(泄露)导致数据库CPU高
10)在多用户高并发的情况下,任何系统都会hold不住的,所以,使用缓存是必须的,使用memcached或者redis缓存都可以;
11)看看tmp_table_size大小是否偏小,如果允许,适当的增大一点;
12)如果max_heap_table_size配置的过小,增大一点;
13)mysql的sql语句睡眠连接超时时间设置问题(wait_timeout)
14)使用show processlist查看mysql连接数,看看是否超过了mysql设置的连接数
一般定位步骤:
1】首先看看内存 free –m
目前看没有问题,1G的空闲
2】好了,用我们的必杀技,top看看资源消耗
可以看到服务器负载很高,mysql CPU使用已达到接近400%,基本可以看出mysql是可以进行优化的
3
作者 王文安,腾讯CSIG数据库专项的数据库工程师,主要负责腾讯云数据库 MySQL 的相关的工作,热爱技术,欢迎留言进行交流。文章首发于腾讯云+社区的腾讯云数据库专家服务专栏。在日常工作中,发现 MySQL 的状态不太对劲的时候,一般都会看看监控指标,很多时候会看到熟悉的一幕:CPU 使用率又爆了。本文将给大家介绍 MySQL 和 CPU 之间的关系,对此有一定的了解之后可以更准确的判断出问题的原因,也能够提前发现一些引发 CPU 问题的隐患。
怎么看懂CPU使用率
以 Linux 的 top 命令为例,效果如下:
Top 命令
在 %CPU 这一列就展示了 CPU 的使用情况,百分比指代的是总体上占用的时间百分比:
%us:表示用户进程的 CPU 使用时间(没有通过 nice 调度)
%sy:表示系统进程的 CPU 使用时间,主要是内核使用。
%ni:表示用户进程中,通过 CPU 调度(nice)过的使用时间。
%id:空闲的 CPU 时间
%wa:CPU 运行时在等待 IO 的时间
%hi:CPU 处理硬中断花费的时间
%si:CPU 处理软中断花费的时间
%st:被虚拟机偷走的 CPU 时间
通常情况下,我们讨论的 CPU 使用率过高,指的是 %us 这个指标,监控里面的 CPU 使用率通常也是这个值(也有用其他的方法计算出来的,不过简单起见,不考虑其他的情况 )。其他几个指标过高也代表出 MySQL 的状态异常,简单起见,这里主要还是指 %us 过高的场景。
MySQL和线程
MySQL 是单进程多线程的结构,意味着独占的 MySQL 服务器里面,只能用 top 命令看到一行数据。
TOP 命令效果
这里能看到的是 MySQL 的进程 ID,如果要看到线程的情况,需要用top -H
TOP 命令效果
在这里能看到的是 MySQL 各个线程的 ID,可以看到 MySQL 在启动之后,会创建非常多的内部线程来工作。
这些内部线程包括 MySQL 自己用来刷脏,读写数据等 *** 作的系统线程,也包括处理用户 SQL 的线程,姑且叫做用户线程吧。用户线程有一个特殊的地方:程序端发送到 MySQL 端的 SQL,只会由一个用户线程来执行(one-thread-per-connection),所以 MySQL 在处理复杂查询的时候,会出现“一核有难,多核围观”的尴尬现象。
参考 %us 的定义,对于 Linux 系统来说,MySQL 进程和它启动的所有线程都不算内核进程,因此 MySQL 的系统线程和用户线程在繁忙的时候,都会体现在 CPU 使用率的 %us 指标上。
什么时候CPU会100%
MySQL 干什么的时候,CPU 会 100%?从前文的分析来看,MySQL 主要是两类线程占用 CPU:系统线程和用户线程。因此 MySQL 独占的服务器上,只需要留意一下这两类线程的情况,就能 Cover 住绝大部分的问题场景。
系统线程
在实际的环境中,系统线程遇到问题的情况会比较少,一般来说,多个系统线程很少会同时跑满,只要服务器的可用核心数大于等于 4 的话,一般也不会遇到 CPU 100%,当然有一些 bug 可能会有影响,比如这个:
MySQL BUG
虽然情况比较少,但是在面对问题的常规排查过程中,系统线程的问题也是需要关注的。
用户线程
提到用户线程繁忙,很多时候肯定会第一时间凭经验想到慢查询。确实 90% 以上的时候都是“慢查询”引起的,不过作为方法论,还是要根据分析再去得出结论的~
参考 us% 的定义,是指用户线程占用 CPU 的时间多少,这代表着用户线程占用了大量的时间。
一方面是在进行长时间的计算,例如:order by,group by,临时表,join 等。这一类问题可能是查询效率不高,导致单个 SQL 语句长时间占用 CPU 时间,也有可能是单纯的数据量比较多,导致计算量巨大。另一方面是单纯的 QPS 压力高,所以 CPU 的时间被用满了,比如 4 核的服务器用来支撑 20k 到 30k 的点查询,每个 SQL 占用的 CPU 时间并不多,但是因为整体的 QPS 很高,所以 CPU 的时间被占满了。
问题的定位
分析完之后,就要开始实战了,这里根据前文的分析给出一些经典的 CPU 100% 场景,并给出简要的定位方法作为参考。
PS:系统线程的 bug 的场景 skip,以后有机会再作为详细的案例来分析。
慢查询
在 CPU 100% 这个问题已经发生之后,真实的慢查询和因为 CPU 100% 导致被影响的普通查询会混在一起,难以直观的看 processlist 或者 slowlog 来发现尊敬的大船,这时候就需要一些比较明确的特征来进行甄别。
从前文的简单分析可以看出来,查询效率不高的慢查询通常有以下几种情况:
全表扫描:Handler_read_rnd_next 这个值会大幅度突增,且这一类查询在 slowlog 中 row_examined 的值也会非常高。
索引效率不高,索引选错了:Handler_read_next 这个值会大幅度的突增,不过要注意这种情况也有可能是业务量突增引起的,需要结合 QPS/TPS 一起看。这一类查询在 slowlog 中找起来会比较麻烦,row_examined 的值一般在故障前后会有比较明显的不同,或者是不合理的偏高。
比如数据倾斜的场景,一个小范围的 range 查询在某个特定的范围内 row_examined 非常高,而其他的范围时 row_examined 比较低,那么就可能是这个索引效率不高。
排序比较多:order by,group by 这一类查询通常不太好从 Handler 的指标直接判断,如果没有索引或者索引不好,导致排序 *** 作没有消除的话,那么在 processlist 和 slowlog 通常能看到这一类查询语句出现的比较多。
当然,不想详细的分析 MySQL 指标或者是情况比较紧急的话,可以直接在 slowlog 里面用 rows_sent 和 row_examined 做个简单的除法,比如 row_examined/rows_sent >1000 的都可以拿出来作为“嫌疑人”处理。这类问题一般在索引方面做好优化就能解决。
PS:1000 只是个经验值,具体要根据实际业务情况来定。
计算量大
这一类问题通常是因为数据量比较大,即使索引没什么问题,执行计划也 OK,也会导致 CPU 100%,而且结合 MySQL one-thread-per-connection 的特性,并不需要太多的并发就能把 CPU 使用率跑满。这一类查询其实是是比较好查的,因为执行时间一般会比较久,在 processlist 里面就会非常显眼,反而是 slowlog 里面可能找不到,因为没有执行完的语句是不会记录的。
这一类问题一般来说有三种比较常规的解决方案:
读写分离,把这一类查询放到平时业务不怎么用的只读从库去。
在程序段拆分 SQL,把单个大查询拆分成多个小查询。
使用 HBASE,Spark 等 OLAP 的方案来支持。
高 QPS
这一类问题单纯的就是硬件资源的瓶颈,不论是 row_examined/rows_sent 的比值,还是 SQL 的索引、执行计划,或者是 SQL 的计算量都不会有什么明显问题,只是 QPS 指标会比较高,而且 processlist 里面可能什么内容都看不到,例如:
processlist
总结
实际上 CPU 100% 的问题其实不仅仅是单纯的 %us,还会有 %io,%sys 等,这些会涉及到 MySQL 与 Linux 相关联的一部分内容,展开来就会比较多了。本文仅从 %us 出发尝试梳理一下排查&定位的思路和方法,在分析 %io,%sys 等方面的问题时,也可以用类似的思路,从这些指标的意义开始,结合 MySQL 的一些特性或者特点,逐步理清楚表象背后的原因。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)